Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for PARVALBUMIN

ACD can configure probes for the various manual and automated assays for PARVALBUMIN for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for Parvalbumin (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (6)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • PVALB (13) Apply PVALB filter
  • Gad1 (6) Apply Gad1 filter
  • (-) Remove TBD filter TBD (5)
  • SLC32A1 (4) Apply SLC32A1 filter
  • Sst (4) Apply Sst filter
  • Slc17a6 (4) Apply Slc17a6 filter
  • Slc17a7 (4) Apply Slc17a7 filter
  • Pv (4) Apply Pv filter
  • Gad2 (3) Apply Gad2 filter
  • Calb2 (3) Apply Calb2 filter
  • Grin1 (3) Apply Grin1 filter
  • VGAT (3) Apply VGAT filter
  • DRD2 (2) Apply DRD2 filter
  • Chat (2) Apply Chat filter
  • Calb1 (2) Apply Calb1 filter
  • Vip (2) Apply Vip filter
  • Grik1 (2) Apply Grik1 filter
  • vGlut2 (2) Apply vGlut2 filter
  • PV (2) Apply PV filter
  • Gal (1) Apply Gal filter
  • Htra1 (1) Apply Htra1 filter
  • NGFR (1) Apply NGFR filter
  • CCK (1) Apply CCK filter
  • CNR1 (1) Apply CNR1 filter
  • NTRK2 (1) Apply NTRK2 filter
  • DRD1 (1) Apply DRD1 filter
  • (-) Remove Grik5 filter Grik5 (1)
  • FOS (1) Apply FOS filter
  • LYPD1 (1) Apply LYPD1 filter
  • Tph2 (1) Apply Tph2 filter
  • Npy (1) Apply Npy filter
  • OPRK1 (1) Apply OPRK1 filter
  • Nptxr (1) Apply Nptxr filter
  • Gabra5 (1) Apply Gabra5 filter
  • GFP (1) Apply GFP filter
  • Htr1b (1) Apply Htr1b filter
  • Slc6a5 (1) Apply Slc6a5 filter
  • OPRM1 (1) Apply OPRM1 filter
  • Pdyn (1) Apply Pdyn filter
  • Npas4 (1) Apply Npas4 filter
  • Tbr1 (1) Apply Tbr1 filter
  • Rxfp3 (1) Apply Rxfp3 filter
  • ACAN (1) Apply ACAN filter
  • Grin2a (1) Apply Grin2a filter
  • Grin2b (1) Apply Grin2b filter
  • ATP1A3 (1) Apply ATP1A3 filter
  • Neto2 (1) Apply Neto2 filter
  • Grin2d (1) Apply Grin2d filter
  • Lhx6 (1) Apply Lhx6 filter
  • Grik2 (1) Apply Grik2 filter

Product

  • RNAscope (2) Apply RNAscope filter
  • RNAscope Fluorescent Multiplex Assay (1) Apply RNAscope Fluorescent Multiplex Assay filter

Research area

  • Neuroscience (3) Apply Neuroscience filter
  • Psychiatry (1) Apply Psychiatry filter
  • Schizophrenia (1) Apply Schizophrenia filter
  • Social Dysfunction (1) Apply Social Dysfunction filter
  • Stress (1) Apply Stress filter

Category

  • (-) Remove Publications filter Publications (6)
Parvalbumin Gates Chronic Pain Through the Modulation of Tonic Firing in Inhibitory Neurons

Available at SSRN 

2023 Jan 01

Qiu, H;Miraucourt, LS;Petitjean, H;Theriault, C;

Spinal cord dorsal horn (DH) inhibition is critical to the processing of sensory inputs, and its impairment leads to mechanical allodynia. How this decreased inhibition occurs and whether its restoration alleviates allodynic pain is poorly understood. Here, we show that the calcium (Ca2+)-binding protein, parvalbumin (PV), controls the activity of inhibitory PV-expressing neurons (PVNs) by enabling them to sustain high-frequency tonic firing patterns. Upon nerve injury, PVNs transition to adaptive firing and decrease their PV expression. Interestingly, decreased PV is necessary and sufficient to the development of mechanical allodynia and the transition of PVNs to adaptive firing. This transition of firing pattern is due to the recruitment of calcium-activated potassium (SK) channels and blocking them during chronic pain restores normal tonic firing. Our findings indicate that PV is essential to the firing activity of PVNs and in preventing allodynia, these observations may lead to novel strategies for chronic pain relief.
Neto Auxiliary Subunits Regulate Interneuron Somatodendritic and Presynaptic Kainate Receptors to Control Network Inhibition

Cell Reports

2017 Aug 29

Wyeth MS, Pelkey KA, Yuan X, Vargish G, Johnston AD, Hunt S, Fang C, Abebe D, Mahadevan V, Fisahn A, Salter MW, McInnes RR, Chittajallu R, McBain CJ.
PMID: 28854365 | DOI: 10.1016/j.celrep.2017.08.017

Although Netos are considered auxiliary subunits critical for kainate receptor (KAR) function, direct evidence for their regulation of native KARs is limited. Because Neto KAR regulation is GluK subunit/Neto isoform specific, such regulation must be determined in cell-type-specific contexts. We demonstrate Neto1/2 expression in somatostatin (SOM)-, cholecystokinin/cannabinoid receptor 1 (CCK/CB1)-, and parvalbumin (PV)-containing interneurons. KAR-mediated excitation of these interneurons is contingent upon Neto1 because kainate yields comparable effects in Neto2 knockouts and wild-types but fails to excite interneurons or recruit inhibition in Neto1 knockouts. In contrast, presynaptic KARs in CCK/CB1 interneurons are dually regulated by both Neto1 and Neto2. Neto association promotes tonic presynaptic KAR activation, dampening CCK/CB1 interneuron output, and loss of this brake in Neto mutants profoundly increases CCK/CB1 interneuron-mediatedinhibition. Our results confirm that Neto1 regulates endogenous somatodendritic KARs in diverse interneurons and demonstrate Neto regulation of presynaptic KARs in mature inhibitory presynaptic terminals.

Parvalbumin interneuron inhibition onto anterior insula neurons projecting to the basolateral amygdala drives aversive taste memory retrieval

Current biology : CB

2021 Apr 23

Yiannakas, A;Kolatt Chandran, S;Kayyal, H;Gould, N;Khamaisy, M;Rosenblum, K;
PMID: 33930301 | DOI: 10.1016/j.cub.2021.04.010

Memory retrieval refers to the fundamental ability of organisms to make use of acquired, sometimes inconsistent, information about the world. Although memory acquisition has been studied extensively, the neurobiological mechanisms underlying memory retrieval remain largely unknown. Conditioned taste aversion (CTA) is a robust associative paradigm, through which animals can be trained to express aversion toward innately appetitive tastants. The anterior insula (aIC) is indispensable in the ability of mammals to retrieve associative information regarding tastants that have been previously linked with gastric malaise. Here, we show that CTA memory retrieval promotes cell-type-specific activation in the aIC. Using chemogenetic tools in the aIC, we found that CTA memory acquisition requires activation of excitatory neurons and inhibition of inhibitory neurons, whereas retrieval necessitates activation of both excitatory and inhibitory aIC circuits. CTA memory retrieval at the aIC activates parvalbumin (PV) interneurons and increases synaptic inhibition onto activated pyramidal neurons projecting to the basolateral amygdala (aIC-BLA). Unlike innately appetitive taste memory retrieval, CTA retrieval increases synaptic inhibition onto aIC-BLA-projecting neurons that is dependent on activity in aIC PV interneurons. PV aIC interneurons coordinate CTA memory retrieval and are necessary for its dominance when conflicting internal representations are encountered over time. The reinstatement of CTA memories following extinction is also dependent on activation of aIC PV interneurons, which increase the frequency of inhibition onto aIC-BLA-projecting neurons. This newly described interaction of PV and a subset of excitatory neurons can explain the coherency of aversive memory retrieval, an evolutionary pre-requisite for animal survival.
Exposure to chronic stress impairs the ability to cope with an acute challenge: Modulation by lurasidone treatment

European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology

2022 Jul 10

Begni, V;Pisano, I;Marizzoni, M;Marchisella, F;Creutzberg, KC;De Rosa, F;Cattaneo, A;Gruca, P;Litwa, E;Papp, M;Riva, MA;
PMID: 35830759 | DOI: 10.1016/j.euroneuro.2022.06.005

Chronic stress represents a major contributor for the development of mental illness. This study aimed to investigate how animals exposed to chronic mild stress (CMS) responded to an acute stress (AS), as a vulnerability's challenge, and to establish the potential effects of the antipsychotic drug lurasidone on such mechanisms. Adult male Wistar rats were exposed or not (controls) to a CMS paradigm for 7 weeks. Starting from the end of week 2, animals were randomized to receive vehicle or lurasidone for 5 weeks. Sucrose intake was used to measure anhedonia. At the end, half of the animals were exposed to an acute stress before sacrifice. Exposure to CMS produced a significant reduction in sucrose consumption, whereas lurasidone progressively normalized such alteration. We found that exposure to AS produced an upregulation of Brain derived neurotrophic factor (Bdnf) in the prefrontal cortex of controls animals. This response was impaired in CMS rats and restored by lurasidone treatment. While in control animals, AS-induced increase of Bdnf mRNA levels was specific for Parvalbumin cells, CMS rats treated with lurasidone show a significant upregulation of Bdnf in pyramidal cells. Furthermore, when investigating the activation of different brain regions, CMS rats showed an impairment in the global response to the acute stressor, that was largely restored by lurasidone treatment. Our results suggest that lurasidone treatment in CMS rats may regulate specific circuits and mechanisms, which will ultimately contribute to boost resilience under stressful challenges.
Erythropoietin Stimulates GABAergic Maturation in the Mouse Hippocampus

eNeuro

2021 Jan 25

Khalid, K;Frei, J;Aboouf, MA;Koester-Hegmann, C;Gassmann, M;Fritschy, JM;Schneider Gasser, EM;
PMID: 33495244 | DOI: 10.1523/ENEURO.0006-21.2021

Several neurodevelopmental disabilities are strongly associated with alterations in GABAergic transmission, and therapies to stimulate its normal development are lacking. Erythropoietin (EPO) is clinically used in neonatology to mitigate acute brain injury, and to stimulate neuronal maturation. Yet it remains unclear whether EPO can stimulate maturation of the GABAergic system. Here, with the use of a transgenic mouse line that constitutively overexpresses neuronal EPO (Tg21), we show that EPO stimulates postnatal GABAergic maturation in the hippocampus. We show an increase in hippocampal GABA-immunoreactive neurons, and postnatal elevation of interneurons expressing parvalbumin (PV), somatostatin (SST) and neuropeptide Y (NPY). Analysis of perineuronal net formation and innervation of glutamatergic terminals onto PV+ cells, shows to be enhanced early in postnatal development. Additionally, an increase in GABAAergic synapse density and inhibitory postsynaptic currents (IPSCs) in CA1 pyramidal cells from Tg21 mice is observed. Detection of erythropoietin receptor (EPOR) mRNA was observed to be restricted to glutamatergic pyramidal cells and increased in Tg21 mice at postnatal day 7, along with reduced apoptosis. Our findings show that EPO can stimulate postnatal GABAergic maturation in the hippocampus, by increasing neuronal survival, modulating critical plasticity periods, and increasing synaptic transmission. Our data supports EPO's clinical use to balance GABAergic dysfunction.Significance Statement Using a mouse model that overexpresses recombinant human EPO in the CNS, we observed stimulation of the postnatal maturation of GABAergic transmission in the hippocampus, notably accelerated maturation of PV+ interneurons, enhanced glutamatergic inputs onto these interneurons, and enhanced inhibitory postsynaptic currents (IPSCs) onto pyramidal cells. We show that EPORs are expressed on pyramidal cells, therefore the impact of EPO on GABAergic maturation is likely to be indirect. Our data show that EPO can modulate hippocampal network maturation and support ongoing trials of the use of EPO in clinical neonatology to stimulate neuronal maturation after perinatal brain injury.
Back translational study: social dysfunction association with Default mode network

Neuroscience Applied

2022 Dec 24

Khatamsaz, E;Stoller, F;Zach, S;Kätzel, D;Hengerer, B;
| DOI: 10.1016/j.nsa.2022.100659

Background: The Psychiatric Ratings using Intermediate Stratified Markers (PRISM) project focuses on understanding the biological background behind social deficits, specifically social withdrawal irrespective of diagnosis. Reduced connectional integrity in fiber tracts such as Forceps minor has been indicated in low social individuals as a part of the PRISM 1 project. These fiber tracts are also involved in the Default Mode Network (DMN) and the Social network and they share a common region, the Orbitofrontal Cortex (OFC).This study aims to back-translate the clinical data to preclinical studies and associate social dysfunction in rodents with DMN and particularly OFC. Parvalbumin interneurons are targeted based on their fundamental role in maintaining Excitatory Inhibitory (E/I) balance in brain circuits. Numerous studies indicate behavioral impairment in rodents by increasing excitability of PV+ interneurons. Methods: As an initial step, we characterized the population of projection neurons within OFCs by combining Cholera Toxin subunit B (CTB) as a retrograde tracer and In situ hybridization (ISH) technique (RNAscope). We identified the expression of mRNAs marking glutamatergic (vesicular glutamate transporter [VGLUT]) and GABAergic (vesicular GABA transporter [VGAT]) by using Slc17a7 and Slc32a1 probes. CTB was injected unilaterally in the left OFC (AP=2.68, ML=-0.8, DV=2.2). after 10 days mice were perfused and RNAscope assay was performed using RNAscope™ Multiplex Fluorescent kit (ACDBio™).For inducing hypoactivation of OFC, we introduced an excitatory DREADD (designer receptors exclusively activated by designer drugs) to PV+ interneurons by using a PV-Cre mouse line. Mice were injected either AAV-hSyn-DIO-hM3D(Gq)-mCherry virus (n=12) or AAV-hSyn-DIO-mCherry (n=12) as control virus. As a novel behavioral tool, Radiofrequency identification (RFID)-assisted SocialScan combined with video tracking has been used, which provides a long-term observation of social behaviors. Monitoring the behavior in groups of four was performed for 7 days in total. After two pre-application days, Clozapine-N-oxide (CNO) was injected three times on consecutive days intraperitoneally (5mg/kg) as an activator of hM3D. application days were followed by two post-application days. Mice were perfused and RNAscope was performed to visualize c-fos mRNA expression as neuronal activity marker, and PV expression to validate our virus and mouse line efficacy. Results: ISH results indicated VGLUT1 has the highest expression within projection neurons (81%). 6% are VGAT+ and only 3% are both VGLUT1/VGAT positive neurons. Despite demonstrating the GABAergic projection neurons as a minority, their crucial role as local interneurons to moderate the excitatory neurons is indisputable.In in vivo study, CNO administration induced social dysregulation in DREAAD mice, demonstrated by a reduction in different social parameters (approach, fight, etc.) in terms of duration. During post-application days, DREAAD mice showed significantly higher social interaction in all definedparameters (Social Approach: p=0.0009, unpaired T-test) and locomotion as a non-social parameter (p= 0.0207).Results from ISH support our hypothesis that DREADD activation of PV+ interneurons is followed by high expression of neuronal activity markers in these targeted interneurons. Conclusion: This study indicates that manipulation of PV+ interneurons using artificially engineered activating protein receptors, generates in effect activation of these interneurons, and this manipulation particularly in OFC could cause social dysfunction in mice.
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?