Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for P53

ACD can configure probes for the various manual and automated assays for P53 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for P53 (954)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (71)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (8) Apply TBD filter
  • HPV E6/E7 (4) Apply HPV E6/E7 filter
  • HPV HR18 (3) Apply HPV HR18 filter
  • CDKN1A (2) Apply CDKN1A filter
  • Trp53 (2) Apply Trp53 filter
  • Lgr5 (2) Apply Lgr5 filter
  • MDM2 (2) Apply MDM2 filter
  • HPV18 (2) Apply HPV18 filter
  • HPV-HR18 (2) Apply HPV-HR18 filter
  • OLFM4 (2) Apply OLFM4 filter
  • p21 (2) Apply p21 filter
  • lincRNA-p21 (2) Apply lincRNA-p21 filter
  • HPV- E6 / E7 (2) Apply HPV- E6 / E7 filter
  • 18 (2) Apply 18 filter
  • 31 (2) Apply 31 filter
  • 33 (2) Apply 33 filter
  • MEG3 (1) Apply MEG3 filter
  • Wnt4 (1) Apply Wnt4 filter
  • Axin2 (1) Apply Axin2 filter
  • Fgfr3 (1) Apply Fgfr3 filter
  • Rspo1 (1) Apply Rspo1 filter
  • Rspo3 (1) Apply Rspo3 filter
  • CLU (1) Apply CLU filter
  • Ccl2 (1) Apply Ccl2 filter
  • DCN (1) Apply DCN filter
  • Gata3 (1) Apply Gata3 filter
  • PTPRD (1) Apply PTPRD filter
  • KIT (1) Apply KIT filter
  • PECAM1 (1) Apply PECAM1 filter
  • MSI2 (1) Apply MSI2 filter
  • PPM1D (1) Apply PPM1D filter
  • H19 (1) Apply H19 filter
  • PTH (1) Apply PTH filter
  • MSI1 (1) Apply MSI1 filter
  • Neurod6 (1) Apply Neurod6 filter
  • Ccnb1 (1) Apply Ccnb1 filter
  • Cav1 (1) Apply Cav1 filter
  • Gpr87 (1) Apply Gpr87 filter
  • NRAS (1) Apply NRAS filter
  • HPV16 (1) Apply HPV16 filter
  • TARDBP (1) Apply TARDBP filter
  • UCA1 (1) Apply UCA1 filter
  • STAT3 (1) Apply STAT3 filter
  • Fas (1) Apply Fas filter
  • Ubc (Ubiquitin C) (1) Apply Ubc (Ubiquitin C) filter
  • PD-L1 (1) Apply PD-L1 filter
  • HER2 (1) Apply HER2 filter
  • RAD51-AS1 (1) Apply RAD51-AS1 filter
  • Atp2a2 (1) Apply Atp2a2 filter
  • Myh7 (1) Apply Myh7 filter

Product

  • RNAscope (10) Apply RNAscope filter
  • RNAscope 2.5 HD Red assay (10) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.0 Assay (9) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Brown Assay (6) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope Multiplex Fluorescent Assay (6) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.5 HD Duplex (4) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 VS Assay (3) Apply RNAscope 2.5 VS Assay filter
  • BASEscope Assay RED (2) Apply BASEscope Assay RED filter
  • RNAscope 2.5 LS Assay (2) Apply RNAscope 2.5 LS Assay filter
  • RNAscope Fluorescent Multiplex Assay (2) Apply RNAscope Fluorescent Multiplex Assay filter
  • TBD (1) Apply TBD filter

Research area

  • Cancer (42) Apply Cancer filter
  • HPV (12) Apply HPV filter
  • Infectious Disease (7) Apply Infectious Disease filter
  • lncRNA (7) Apply lncRNA filter
  • Neuroscience (6) Apply Neuroscience filter
  • Inflammation (4) Apply Inflammation filter
  • Other (3) Apply Other filter
  • Stem Cells (3) Apply Stem Cells filter
  • Development (2) Apply Development filter
  • Stem cell (2) Apply Stem cell filter
  • Arthitis (1) Apply Arthitis filter
  • Bone Development (1) Apply Bone Development filter
  • Bovine papillomavirus (1) Apply Bovine papillomavirus filter
  • Cancer lncRNA (1) Apply Cancer lncRNA filter
  • Cancers (1) Apply Cancers filter
  • Cell Therapy (1) Apply Cell Therapy filter
  • Engineered T cells (1) Apply Engineered T cells filter
  • Immunotherapy (1) Apply Immunotherapy filter
  • Infectious (1) Apply Infectious filter
  • Other: lung fibrosis (1) Apply Other: lung fibrosis filter
  • Other: Zoological Disease (1) Apply Other: Zoological Disease filter
  • Pharmacology (1) Apply Pharmacology filter
  • Proteasome inhibitor (1) Apply Proteasome inhibitor filter
  • Sarcoids (1) Apply Sarcoids filter
  • Tumor microenvironment (1) Apply Tumor microenvironment filter

Category

  • Publications (71) Apply Publications filter
LncRNA Meg3 protects endothelial function by regulating the DNA damage response.

Nucleic Acids Research

2018 Nov 22

Shihabudeen Haider Ali MS, Cheng X, Moran M, Haemmig S, Naldrett MJ, Alvarez S, Feinberg MW, Sun X.
PMID: - | DOI: 10.1093/nar/gky1190

Abstract

The role of long non-coding RNAs (lncRNAs) in regulating endothelial function through the DNA damage response (DDR) remains poorly understood. In this study, we demonstrate that lncRNA maternally expressed gene 3 (Meg3) interacts with the RNA binding protein polypyrimidine tract binding protein 3 (PTBP3) to regulate gene expression and endothelial function through p53 signaling ─ a major coordinator of apoptosis and cell proliferation triggered by the DDR. Meg3 expression is induced in endothelial cells (ECs) upon p53 activation. Meg3 silencing induces DNA damage, activates p53 signaling, increases the expression of p53 target genes, promotes EC apoptosis, and inhibits EC proliferation. Mechanistically, Meg3 silencing reduces the interaction of p53 with Mdm2, induces p53 expression, and promotes the association of p53 with the promoters of a subset of p53 target genes. PTBP3 silencing recapitulates the effects of Meg3 deficiency on the expression of p53 target genes, EC apoptosis and proliferation. The Meg3-dependent association of PTBP3 with the promoters of p53 target genes suggests that Meg3 and PTBP3 restrain p53 activation. Our studies reveal a novel role of Meg3 and PTBP3 in regulating p53 signaling and endothelial function, which may serve as novel targets for therapies to restore endothelial homeostasis.

Proteasome inhibitor bortezomib stabilizes and activates p53 in hematopoietic stem/progenitors and double-negative T cells in vivo

Proceedings of the National Academy of Sciences of the United States of America

2023 Mar 28

Xue, Y;San Luis, B;Dress, RJ;Murad, KBA;Ginhoux, F;Barker, N;Lane, D;
PMID: 36940336 | DOI: 10.1073/pnas.2219978120

We have previously shown that proteasome inhibitor bortezomib stabilizes p53 in stem and progenitor cells within gastrointestinal tissues. Here, we characterize the effect of bortezomib treatment on primary and secondary lymphoid tissues in mice. We find that bortezomib stabilizes p53 in significant fractions of hematopoietic stem and progenitor cells in the bone marrow, including common lymphoid and myeloid progenitors, granulocyte-monocyte progenitors, and dendritic cell progenitors. The stabilization of p53 is also observed in multipotent progenitors and hematopoietic stem cells, albeit at lower frequencies. In the thymus, bortezomib stabilizes p53 in CD4-CD8- T cells. Although there is less p53 stabilization in secondary lymphoid organs, cells in the germinal center of the spleen and Peyer's patch accumulate p53 in response to bortezomib. Bortezomib induces the upregulation of p53 target genes and p53 dependent/independent apoptosis in the bone marrow and thymus, suggesting that cells in these organs are robustly affected by proteasome inhibition. Comparative analysis of cell percentages in the bone marrow indicates expanded stem and multipotent progenitor pools in p53R172H mutant mice compared with p53 wild-type mice, suggesting a critical role for p53 in regulating the development and maturation of hematopoietic cells in the bone marrow. We propose that progenitors along the hematopoietic differentiation pathway express relatively high levels of p53 protein, which under steady-state conditions is constantly degraded by Mdm2 E3 ligase; however, these cells rapidly respond to stress to regulate stem cell renewal and consequently maintain the genomic integrity of hematopoietic stem/progenitor cell populations.
Clinicopathologic diagnosis of dVIN related vulvar squamous cell carcinoma: An extended appraisal from a tertiary women's hospital

Gynecology and Obstetrics Clinical Medicine

2023 Jan 01

Wang, T;Baloda, V;Harinath, L;Jones, T;Zhang, H;Bhargava, R;Zhao, C;
| DOI: 10.1016/j.gocm.2023.01.004

Background Differentiated vulvar intraepithelial neoplasia (dVIN) is a non-human papilloma virus (HPV)-related high-grade precursor lesion to vulvar squamous cell carcinoma (vSCCa). Although TP53 gene mutations have been identified in 80% of dVIN, its role in dVIN pathogenesis as well as malignant transformation is still being poorly understood. Poor reproducible diagnostic criteria and ambiguous p53 immunostaining patterns, along with morphologic discordance still pose a diagnostic challenge. Methods A series of 60 cases of dVIN-related vSCCa along with adjacent dVIN were evaluated. Clinicopathological features as well as immunohistochemical results were recorded on the resection-confirmed dVIN-related vSCCa. Results The average age of the patients was 71 years. Thirty-five cases (58.4%) of dVIN-related vSCCa were moderately differentiated, fourteen cases (23.3%) were poorly differentiated, and the remaining eleven cases (18.3%) were well-differentiated. Twenty-nine cases (48.3%) were found to have lichen sclerosus adjacent to dVIN. In terms of p53 and p16 expression in dVIN-related vSCCa and the adjacent dVIN, fifty-five (91.7%) dVIN showed mutant p53 immunostaining pattern with strong positive expression in 80% cases (basal/para-basal expression) and null pattern expression in 11.7% cases. Five (8.3%) dVIN showed p53 wild-type staining pattern. The wild-type pattern were seen in 5% of vSCCa and p53 null pattern were seen in 13.3% vSCCa. Six cases demonstrated atypical staining patterns: two cases showed p53 null expression in dVIN but p53 overexpression in invasive carcinoma; three cases exhibited p53 null expression in invasive carcinoma, with the adjacent dVIN showing basal and para-basal mutant (2 cases) and wild-type (1 case) p53 expression patterns. A single case demonstrated p53 wild-type pattern in dVIN and overexpression in invasive carcinoma. In addition, 65% dVIN were p16 negative and 31.7% dVIN had patchy p16 staining. Conclusion: Clinical and prognostic value of the ambiguous/inconsistent patterns are uncertain and molecular studies are needed for further characterization.
Persistence of Human Papillomavirus, Overexpression of p53, and Outcomes of Patients After Endoscopic Ablation of Barrett's Esophagus.

Clin Gastroenterol Hepatol. 2014 Nov 21.

Rajendra S, Wang B, Pavey D, Sharma P, Yang T, Lee CS, Gupta N, Ball MJ, Gill RS, Wu X.

We investigated the role of high-risk human papillomavirus (hr-HPV) in patients with Barrett's dysplasia and adenocarcinoma (EAC). Clearance vs persistence of HPV (DNA, E6 or E7 mRNA, and p16INK4A protein) and overexpression or mutation of p53 were determined for 40 patients who underwent endotherapy for Barrett's dysplasia or EAC. After ablation, dysplasia or neoplasia was eradicated in 34 subjects (24 squamous, 10 intestinal metaplasia). Six patients had detectable lesions after treatment; 2 were positive for transcriptionally active hr-HPV, and 4 had overexpression of p53. Before endotherapy, 15 patients had biologically active hr-HPV, 13 cleared the infection with treatment, and dysplasia or EAC was eliminated from 12 patients. One patient who cleared HPV after ablation acquired a p53 mutation, and their cancer progressed. Of 13 patients with overexpression of p53 before treatment, 10 cleared the p53 abnormality after ablation with eradication of dysplasia or neoplasia, whereas 3 of 13 had persistent p53 mutation-associated dysplasia after endotherapy (P = .004). Immunohistochemical and sequence analyses of p53 produced concordant results for 36 of 40 samples (90%). Detection of dysplasia or neoplasia after treatment was associated with HPV persistence or continued p53 overexpression.
The hot-spot p53R172H mutant promotes formation of giant spermatogonia triggered by DNA damage

Oncogene.

2016 Nov 21

Xue Y, Raharja A, Sim W, Wong ES, Rahmat SA, Lane DP.
PMID: 27869164 | DOI: 10.1038/onc.2016.374

Overexpression of mutant p53 is a common finding in most cancers but testicular tumours accumulate wild-type p53 (wtp53). In contrast to the accepted concept that p53 homozygous mutant mice do not accumulate mutant p53 in normal cells, our study on a mutant p53 mouse model of Li-Fraumeni syndrome harbouring the hot-spot p53R172H mutation described an elevated level of mutant p53 in non-cancerous mouse tissues. Here we use detailed immunohistochemical analysis to document the expression of p53R172H in mouse testis. In developing and adult testes, p53R172H was expressed in gonocytes, type A, Int, B spermatogonia as well as in pre-Sertoli cells and Leydig cells but was undetectable in spermatocytes and spermatids. A similar staining pattern was demonstrated for wtp53. However, the intensity of wtp53 staining was generally weaker than that of p53R172H, which indicates that the expression of p53R172H can be a surrogate marker of p53 gene transcription. Comparing the responses of wtp53 and p53R172H to irradiation, we found persistent DNA double-strand breaks in p53R172H testes and the formation of giant spermatogonia (GSG) following persistent DNA damage in p53R172H and p53-null mice. Strikingly, we found that p53R172H promotes spontaneous formation of GSG in non-stressed p53R172H ageing mice. Two types of GSG: Viable and Degenerative GSG were defined. We elucidate the factors involved in the formation of GSG: the loss of p53 function is a requirement for the formation of GSG whereas DNA damage acts as a promoting trigger. The formation of GSG does not translate to higher efficacy of testicular tumorigenesis arising from mutant p53 cells, which might be due to the presence of delayed-onset of p53-independent apoptosis.

Classification of Vulvar Squamous Cell Carcinoma and Precursor Lesions by p16 and p53 Immunohistochemistry: Considerations, Caveats and an Algorithmic Approach

Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc

2023 Feb 22

Yang, H;Almadani, N;Thompson, EF;Tessier-Cloutier, B;Chen, J;Ho, J;Senz, J;McConechy, MK;Chow, C;Ta, M;Cheng, A;Karnezis, A;Huvila, J;McAlpine, JN;Gilks, B;Jamieson, A;Hoang, LN;
PMID: 36828360 | DOI: 10.1016/j.modpat.2023.100145

There is emerging evidence that vulvar squamous cell carcinoma (VSCC) can be prognostically subclassified into 3 groups based on human papillomavirus (HPV) and p53 status: HPV-associated (HPV+), HPV-independent/p53 wild-type (HPV-/p53wt), or HPV-independent/p53 abnormal (HPV-/p53abn). Our goal was to assess the feasibility of separating VSCC and its precursors into these 3 groups using p16 and p53 immunohistochemistry (IHC). A tissue microarray (TMA) containing 225 VSCC, 43 usual vulvar intraepithelial neoplasia (uVIN/HSIL), 10 verruciform acanthotic vulvar intraepithelial neoplasia (vaVIN), and 34 differentiated VIN (dVIN), was stained for p16 and p53. Non-complementary p16 and p53 patterns were resolved by repeating p53 IHC and HPV RNA in-situ hybridization (ISH) on whole sections, and sequencing for TP53. Of 82 p16-positive VSCC, 73 (89%) had complementary p16 and p53 patterns and were classified into the HPV+ group, 4 (4.9%) had wild-type p53 staining, positive HPV ISH, and were classified into the HPV+ group, while 5 (6.1%) had p53 abnormal IHC patterns (1 null, 4 overexpression), negativity for HPV ISH and harboured TP53 mutations (1 splice-site, 4 missense); they were classified as HPV-/p53abn. Of 143 p16-negative VSCC, 142 (99.3%) had complementary p53 and p16 patterns; 115 (80.4%) HPV-/p53abn and 27 (18.9%) HPV-/p53wt. One had a basal-sparing p53 pattern, positivity for HPV ISH, and was negative for TP53 mutations; it was classified into the HPV+ category. The use of IHC also led to the following revised diagnoses: HSIL to dVIN (3/43), dVIN to vaVIN (8/34), and dVIN to HSIL (3/34). Overall, 215/225 VSCC (95.6%) could be easily classifiable into 3 groups with p16 and p53 IHC. We identified several caveats, with the major caveat being that 'double positive' p16/p53 should be classified as HPV-/p53abn, and propose an algorithm which will facilitate the application of p16 and p53 IHC to classify VSCC in pathology practice.
Abnormal p53 Immunohistochemical Patterns Shed Light on the Aggressiveness of Oral Epithelial Dysplasia

Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc

2023 Mar 09

Novack, R;Zhang, L;Hoang, LN;Kadhim, M;Ng, TL;Poh, CF;Kevin Ko, YC;
PMID: 36906072 | DOI: 10.1016/j.modpat.2023.100153

The diagnosis of oral epithelial dysplasia is based on the degree of architectural and cytologic atypia in the squamous epithelium. The conventional grading system of mild, moderate, and severe dysplasia is considered by many the gold standard in predicting the risk of malignant transformation. Unfortunately, some low-grade lesions, with or without dysplasia, progress to squamous cell carcinoma (SCC) in short periods. As a result, we are proposing a new approach to characterize oral dysplastic lesions that will help identify lesions at high risk for malignant transformation. We included a total of 203 cases of oral epithelial dysplasia, proliferative verrucous leukoplakia, lichenoid, and commonly observed mucosal reactive lesions to evaluate their p53 immunohistochemical (IHC) staining patterns. We identified 4 wild-type patterns, including scattered basal, patchy basal/parabasal, null-like/basal sparing, mid-epithelial/basal sparing, and 3 abnormal p53 patterns, including overexpression basal/parabasal only, overexpression basal/parabasal to diffuse, and null. All cases of lichenoid and reactive lesions exhibited scattered basal or patchy basal/parabasal patterns, whereas human papillomavirus-associated oral epithelial dysplasia demonstrated null-like/basal sparing or mid-epithelial/basal sparing patterns. Of the oral epithelial dysplasia cases, 42.5% (51/120) demonstrated an abnormal p53 IHC pattern. p53 abnormal oral epithelial dysplasia was significantly more likely to progress to invasive SCC when compared with p53 wild-type oral epithelial dysplasia (21.6% vs 0%, P < .0001). Furthermore, p53 abnormal oral epithelial dysplasia was more likely to have dyskeratosis and/or acantholysis (98.0% vs 43.5%, P < .0001). We propose the term p53 abnormal oral epithelial dysplasia to highlight the importance of utilizing p53 IHC stain to recognize lesions that are at high risk of progression to invasive disease, irrespective of the histologic grade, and propose that these lesions should not be graded using the conventional grading system to avoid delayed management.
Prognostic implications and interaction of L1 methylation and p53 expression statuses in advanced gastric cancer.

Clin Epigenetics.

2019 May 14

Shin YJ, Kim Y, Wen X, Cho NY, Lee S, Kim WH, Kang GH.
PMID: 31088544 | DOI: 10.1186/s13148-019-0661-x

Abstract

BACKGROUND:

TP53 is frequently mutated across various tissue types of cancers. In normal cells, long interspersed nuclear element-1 (LINE-1, L1) is mostly repressed by DNA methylation in its 5' untranslated region but is activated by DNA demethylation process during tumorigenesis. p53 is indispensable for maintaining genomic stability and plays its role in controlling genomic stability by repressing retrotransposon activity. However, it is unclear whether p53 regulates expression or methylation of L1 differently depending on the mutational status of TP53. Four hundred ninety cases of advanced gastric cancer (AGC) were analyzed for their statuses in p53 expression and L1 methylation using immunohistochemistry and pyrosequencing, respectively. Whether L1 methylation and expression statuses were differently affected by types of TP53 mutants was analyzed in gastric cancer cell line.

RESULTS:

By p53 immunohistochemistry, tumors were classified into 4 groups according to the intensity and extent of stained tumor nuclei. L1 methylation level was significantly higher in p53 expression group 1 than in the other groups in which L1 methylation level was similar (P <  0.001). Although L1 methylation and p53 expression statuses were associated with patient survival, multivariate analysis revealed that L1 methylation was an independent prognostic parameter. In in vitro analysis of AGS cells with the introduction of wild type or mutant types of TP53, L1 methylation level and activity were different depending on types of TP53 mutation.

CONCLUSIONS:

Findings suggest that L1 methylation level is affected by TP53 mutation status; although, L1 methylation status was an independent prognostic parameter in patients with AGC. Further study is required to elucidate the mechanism of how wild type or mutant p53 affects L1 activity and methylation status of L1 CpG island.

Active human papillomavirus involvement in Barrett's dysplasia and oesophageal adenocarcinoma is characterized by wild-type p53 and aberrations of the retinoblastoma protein pathway

Int J Cancer.

2017 Jul 19

Rajendra S, Yang T, Xuan W, Sharma P, Pavey D, Soon Lee C, Le S, Collins J, Wang B.
PMID: 28722212 | DOI: 10.1002/ijc.30896

We have previously demonstrated that transcriptionally active high-risk HPV (hr-HPV) is strongly incriminated in Barrett's dysplasia (BD) and oesophageal adenocarcinoma (OAC) using mainly fresh frozen tissue. This study aimed to identify biomarkers of active HPV infection in Barrett's metaplasia, (BM)/BD/OAC by immunohistochemical staining (IHC) of formalin-fixed paraffin embedded (FFPE) tissue for aberrations of p53 and the retinoblastoma (pRb) pathway which are targets for the viral oncoproteins, E6/E7 respectively. Prospectively, BM(n=81)/BD(n=72)/OAC(n=65) FFPE specimens were subjected to IHC staining for pRb, p16INK4A , cyclin D1 , p53 and RNA in-situ hybridization (ISH) for E6/E7 transcripts. HPV DNA was determined via PCR in fresh frozen specimens. Viral load measurement (real-time PCR) and Next Generation Sequencing of TP53 was also performed. Of 218 patients, 56 were HPV DNA positive [HPV16 (n=42), 18 (n=13), 6 (n=1)]. Viral load was low. Transcriptionally active HPV (DNA+ /RNA+ ) was only found in the dysplastic and adenocarcinoma group (n=21). The majority of HPV DNA+ /RNA+ BD/OAC were characterized by p16INK4Ahigh (14/21, 66.7%), pRblow (15/21, 71.4%) and p53low (20/21, 95%) and was significantly different to controls [combination of HPV DNA- /RNA- (n=94) and HPV DNA+ /RNA- cohorts (n=22)]. p53low had the strongest association with DNA+ /RNA+ oesophageal lesions (OR=23.5, 95% CI=2.94-187.8, p=0.0029). Seventeen HPV DNA+ /RNA+BD/OAC identified as p53low, were sequenced and all but one exhibited wild-type status. pRblow /p53low provided the best balance of strength of association (OR=8.0, 95% CI=2.6-25.0, p=0.0003) and sensitivity (71.4%)/specificity (71.6%) for DNA+ /RNA+ BD/OAC. Active HPV involvement in BD/OAC is characterized by wild-type p53 and aberrations of the retinoblastoma protein pathway.

HDAC1/2 control proliferation and survival in adult epidermis and pre-basal cell carcinoma via p16 and p53

The Journal of investigative dermatology

2021 Jul 17

Zhu, X;Leboeuf, M;Liu, F;Grachtchouk, M;Seykora, JT;Morrisey, EE;Dlugosz, AA;Millar, SE;
PMID: 34284046 | DOI: 10.1016/j.jid.2021.05.026

HDAC inhibitors show therapeutic promise for skin malignancies; however, the roles of specific HDACs in adult epidermal homeostasis and disease are poorly understood. We find that homozygous epidermal co-deletion of Hdac1 and Hdac2 in adult mouse epidermis causes reduced basal cell proliferation, apoptosis, inappropriate differentiation, and eventual loss of Hdac1/2-null keratinocytes. Hdac1/2 deficient epidermis displays elevated acetylated p53 and increased expression of the senescence gene p16. Loss of p53 partially restores basal proliferation, whereas p16 deletion promotes long-term survival of Hdac1/2-null keratinocytes. In activated GLI2-driven pre-basal cell carcinoma, Hdac1/2 deletion dramatically reduces proliferation and increases apoptosis, and knockout of either p53 or p16 partially rescues both proliferation and basal cell viability. Topical application of the HDAC inhibitor Romidepsin to normal epidermis or GLI2ΔN-driven lesions produces similar defects to genetic Hdac1/2 deletion, and these are partially rescued by loss of p16. These data reveal essential roles for HDAC1/2 in maintaining proliferation and survival of adult epidermal and basal cell carcinoma progenitors and suggest efficacy of therapeutic HDAC1/2 inhibition will depend in part on the mutational status of p53 and p16.
p53-dependent c-Fos expression is a marker but not executor for motor neuron death in spinal muscular atrophy mouse models

Frontiers in cellular neuroscience

2022 Nov 07

Buettner, JM;Sowoidnich, L;Gerstner, F;Blanco-Redondo, B;Hallermann, S;Simon, CM;
PMID: 36419936 | DOI: 10.3389/fncel.2022.1038276

The activation of the p53 pathway has been associated with neuronal degeneration in different neurological disorders, including spinal muscular atrophy (SMA) where aberrant expression of p53 drives selective death of motor neurons destined to degenerate. Since direct p53 inhibition is an unsound therapeutic approach due carcinogenic effects, we investigated the expression of the cell death-associated p53 downstream targets c-fos, perp and fas in vulnerable motor neurons of SMA mice. Fluorescence in situ hybridization (FISH) of SMA motor neurons revealed c-fos RNA as a promising candidate. Accordingly, we identified p53-dependent nuclear upregulation of c-Fos protein in degenerating motor neurons from the severe SMNΔ7 and intermediate Smn2B/- SMA mouse models. Although motor neuron-specific c-fos genetic deletion in SMA mice did not improve motor neuron survival or motor behavior, p53-dependent c-Fos upregulation marks vulnerable motor neurons in different mouse models. Thus, nuclear c-Fos accumulation may serve as a readout for therapeutic approaches targeting neuronal death in SMA and possibly other p53-dependent neurodegenerative diseases.
p53-targeted lincRNA-p21 acts as a tumor suppressor by inhibiting JAK2/STAT3 signaling pathways in head and neck squamous cell carcinoma

Mol Cancer

2019 Mar 11

Jin S, Yang X, Li J, Yang W, Ma H and Zhang Z
PMID: 30857539 | DOI: 10.1186/s12943-019-0993-3

BACKGROUND: Long intergenic noncoding RNA p21 (lincRNA-p21) is considered a target of wild-type p53, but little is known about its regulation by mutant p53 and its functions during the progression of head and neck squamous cell carcinoma (HNSCC). METHODS: RNAscope was used to detect the expression and distribution of lincRNA-p21. Chromatin immunoprecipitation and electrophoretic mobility shift assays were performed to analyze the transcriptional regulation of lincRNA-p21 in HNSCC cells. The biological functions of lincRNA-p21 were investigated in vitro and in vivo. RNA immunoprecipitation and pull-down assays were used to detect the direct binding of lincRNA-p21. RESULTS: Lower lincRNA-p21 expression was observed in HNSCC tissues and indicated worse prognosis. Both wild and mutant type p53 transcriptionally regulated lincRNA-p21, but nuclear transcription factor Y subunit alpha (NF-YA) was essential for mutant p53 in the regulation of lincRNA-p21. Ectopic expression of lincRNA-p21 significantly inhibited cell proliferation capacity in vitro and in vivo and vice versa. Moreover, the overexpression of lincRNA-p21 induced G1 arrest and apoptosis. Knockdown NF-YA expression reversed tumor suppressor activation of lincRNA-p21 in mutant p53 cells, not wild-type p53 cells. A negative correlation was observed between lincRNA-p21 and the phosphorylation of signal transducer and activator of transcription 3 (p-STAT3) in HNSCC tissues. High lincRNA-p21 expression inhibited Janus kinase 2 (JAK2)/STAT3 signal activation and vice versa. Further, we observed direct binding to STAT3 by lincRNA-p21 in HNSCC cells, which suppressed STAT3-induced oncogenic potential. CONCLUSIONS: Our results revealed the transcriptional regulation of lincRNA-p21 by the mutant p53/NF-YA complex in HNSCC. LincRNA-p21 acted as a tumor suppressor in HNSCC progression, which was attributed to direct binding to STAT3 and blocking of JAK2/STAT3 signaling.

Pages

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?