Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for P16

ACD can configure probes for the various manual and automated assays for P16 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for P16 (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (7)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • HPV E6/E7 (3) Apply HPV E6/E7 filter
  • HR-HPV-18 (1) Apply HR-HPV-18 filter
  • HPV E6 / E7 (1) Apply HPV E6 / E7 filter
  • HPV- E6 / E7 (1) Apply HPV- E6 / E7 filter
  • HR18 HPV E6/E7 (1) Apply HR18 HPV E6/E7 filter

Product

  • (-) Remove RNAscope 2.5 HD Brown Assay filter RNAscope 2.5 HD Brown Assay (7)

Research area

  • HPV (7) Apply HPV filter
  • Cancer (5) Apply Cancer filter
  • Infectious Disease (2) Apply Infectious Disease filter

Category

  • Publications (7) Apply Publications filter
In situ hybridization for high-risk HPV E6/E7 mRNA is a superior method for detecting transcriptionally active HPV in oropharyngeal cancer.

Hum Pathol

2019 May 20

Randén-Brady R, Carpén T, Jouhi L, Syrjänen S, Haglund C, Tarkkanen J, Remes S, Mäkitie A, Mattila PS, Silén S, Hagström J.
PMID: 31121191 | DOI: 10.1016/j.humpath.2019.05.006

Current human papillomavirus (HPV) detection methods in oropharyngeal squamous cell carcinoma (OPSCC) have varying sensitivity and specificity. We aimed to compare different HPV-detection methods against the test used in clinical practice, ie, p16 immunohistochemistry (IHC) and to evaluate whether another HPV-detection test additional to p16 IHC would be worthwhile in OPSCC specimens. The study cohort comprised 357 consecutive OPSCC patients during two time periods: 2000-2009 and 2012-2016. From tumor tissue slides, HPV mRNA via in situ hybridization (ISH), HPV DNA via ISH and HPV DNA via polymerase chain reaction (PCR) were detected. The results of these methods were compared with p16 IHC results. Additionally, clinicopathological factors were compared with the methods studied. The sensitivity of HPV mRNA ISH, HPV DNA ISH and HPV DNA PCR were 93.4%, 86.3%, and 83.5%, respectively. The corresponding specificity was 92.4%, 95.3%, and 89.1%, respectively. The negative predictive value for p16 IHC was highest (89.0%) when using mRNA ISH, and followed by DNA ISH (83.5%). ISH for high-risk HPV E6/E7 mRNA was found to be a highly specific and sensitive method for detecting HPV in OPSCC. As p16 protein may be overexpressed due to HPV-independent mechanisms, all p16 IHC-positive OPSCCs should be considered for retesting using mRNA ISH in order to verify transcriptionally active HPV. This is especially critical when considering de-escalated treatment approaches for patients with HPV-positive tumors and still maintaining favorable outcomes for this subgroup of patients

Classification of Vulvar Squamous Cell Carcinoma and Precursor Lesions by p16 and p53 Immunohistochemistry: Considerations, Caveats and an Algorithmic Approach

Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc

2023 Feb 22

Yang, H;Almadani, N;Thompson, EF;Tessier-Cloutier, B;Chen, J;Ho, J;Senz, J;McConechy, MK;Chow, C;Ta, M;Cheng, A;Karnezis, A;Huvila, J;McAlpine, JN;Gilks, B;Jamieson, A;Hoang, LN;
PMID: 36828360 | DOI: 10.1016/j.modpat.2023.100145

There is emerging evidence that vulvar squamous cell carcinoma (VSCC) can be prognostically subclassified into 3 groups based on human papillomavirus (HPV) and p53 status: HPV-associated (HPV+), HPV-independent/p53 wild-type (HPV-/p53wt), or HPV-independent/p53 abnormal (HPV-/p53abn). Our goal was to assess the feasibility of separating VSCC and its precursors into these 3 groups using p16 and p53 immunohistochemistry (IHC). A tissue microarray (TMA) containing 225 VSCC, 43 usual vulvar intraepithelial neoplasia (uVIN/HSIL), 10 verruciform acanthotic vulvar intraepithelial neoplasia (vaVIN), and 34 differentiated VIN (dVIN), was stained for p16 and p53. Non-complementary p16 and p53 patterns were resolved by repeating p53 IHC and HPV RNA in-situ hybridization (ISH) on whole sections, and sequencing for TP53. Of 82 p16-positive VSCC, 73 (89%) had complementary p16 and p53 patterns and were classified into the HPV+ group, 4 (4.9%) had wild-type p53 staining, positive HPV ISH, and were classified into the HPV+ group, while 5 (6.1%) had p53 abnormal IHC patterns (1 null, 4 overexpression), negativity for HPV ISH and harboured TP53 mutations (1 splice-site, 4 missense); they were classified as HPV-/p53abn. Of 143 p16-negative VSCC, 142 (99.3%) had complementary p53 and p16 patterns; 115 (80.4%) HPV-/p53abn and 27 (18.9%) HPV-/p53wt. One had a basal-sparing p53 pattern, positivity for HPV ISH, and was negative for TP53 mutations; it was classified into the HPV+ category. The use of IHC also led to the following revised diagnoses: HSIL to dVIN (3/43), dVIN to vaVIN (8/34), and dVIN to HSIL (3/34). Overall, 215/225 VSCC (95.6%) could be easily classifiable into 3 groups with p16 and p53 IHC. We identified several caveats, with the major caveat being that 'double positive' p16/p53 should be classified as HPV-/p53abn, and propose an algorithm which will facilitate the application of p16 and p53 IHC to classify VSCC in pathology practice.
High-risk type human papillomavirus infection and p16 expression in laryngeal cancer.

Infectious Agents and Cancer

2019 Mar 05

Kiyuna A, Ikegami T, Uehara T, Hirakawa H, Agena S, Uezato J, Kondo S, Yamashita Y, Deng Z, Maeda H, Suzuki M, Ganaha A.
PMID: - | DOI: 10.1186/s13027-019-0224-y

Background

Oropharyngeal cancers associated with high-risk type human papillomavirus (HR-HPV) infection have better prognosis than virus negative cancers. Similarly, the HPV status in laryngeal cancer (LC) may be associated with better outcome.

Methods

Samples from 88 patients with LC were investigated using the polymerase chain reaction (PCR) and p16 immunohistochemistry for HR-HPV analysis. The cut-off point for p16 overexpression was diffuse (≥75%) tumor expression with at least moderate (+ 2/3) staining intensity.

Results

The 5-year cumulative survival (CS) rate was 80.7% in all patients with LC. According to a combination of HR-HPV DNA status and p16 overexpression, subjects with LC were divided into four groups: HR-HPV DNA-positive/p16 overexpression-positive (n = 5, 5.7%; CS = 100%), HR-HPV DNA-positive/p16 overexpression-negative (n = 11, 12.5%; CS =81.8%), HR-HPV DNA-negative/p16 overexpression-positive (n = 0), and HR-HPV DNA-negative/p16 overexpression-negative (n = 72, 81.8%; CS = 79.5%). HR-HPV DNA-positive/p16-positive cases tended to have integrated HPV infection and high viral load, compared with HR-HPV DNA-positive/p16 overexpression-negative cases.

Conclusions

LC patients with HPV infection and high levels of p16 expression might have an improved survival outcome; however, it is necessary to recruit additional LC cases with HPV infection to determine the definitive characteristics of HPV-mediated LC and estimate survival outcome. These results may contribute to the development of a useful method for selecting patients with a potentially fair response to treatment and ensure laryngeal preservation.

Comparison of Human Papillomavirus RNA In Situ Hybridization and p16 Immunostaining in Diagnostically Challenging High-Grade Squamous Intraepithelial Lesions in the Background of Atrophy

Archives of pathology & laboratory medicine

2022 Jun 23

Banet, N;Mao, Q;Chu, S;Ruhul Quddus, M;
PMID: 35738001 | DOI: 10.5858/arpa.2021-0426-OA

Human papillomavirus (HPV) in the postmenopausal age group is complex, with infected patients in this age group at increased risk of progressing to invasive disease and showing decreased clearance of the virus. Additionally, atrophic changes of the cervix can make histologic distinction of high-grade squamous intraepithelial lesions (HSILs) difficult.To determine morphologic and ancillary testing characteristics of atrophy and HSIL in postmenopausal patients.Files of patients at least 65 years of age were examined, with 81 patients (109 cases [53 benign, 56 HSIL]) included in the study. Results of morphology, immunostaining (p16 and Ki-67), and HPV RNA in situ hybridization (ISH) were noted on all cases with available material.Atrophy was present in 96 of 109 cases (88%) overall. Coarse nuclear chromatin was noted in none of the benign cases, in 19 of 30 HSIL biopsies (63%), and in 24 of 26 HSIL excisions (92%). All benign cases were negative for p16 and ISH. In the HSIL cases, 45 of 53 (89%) were positive for p16, and of cases with sufficient tissue for ISH, 44 of 45 (98%) were positive. Of the ISH/p16 discordant cases (n = 7), most were p16 negative/ISH positive (6 of 7; 86%), whereas 1 of 7 (14%) was p16 positive and ISH negative. A majority of HSIL cases showed near-full-thickness elevation of Ki-67 (45 of 54; 83%), whereas mitotic figures were less elevated.In postmenopausal patients with HSIL, mitotic activity is not reliably elevated, but Ki-67 is consistently high. ISH is a more direct method of HPV detection and should be considered in cases where morphology and immunolabeling show discordance.
Human Papillomavirus-Associated Oral Cavity Squamous Cell Carcinoma: An Entity with Distinct Morphologic and Clinical Features

Head and neck pathology

2022 Jul 08

Lewis, JS;Smith, MH;Wang, X;Tong, F;Mehrad, M;Lang-Kuhs, KA;
PMID: 35802245 | DOI: 10.1007/s12105-022-01467-0

HPV-associated oral cavity squamous cell carcinoma (SCC) is not well-characterized in the literature, and also has a clinical significance that is poorly understood.We gathered a cohort of oral cavity (OC) SCC with nonkeratinizing morphology, either in the invasive or in situ carcinoma (or both), tested for p16 by immunohistochemistry and high risk HPV E6/E7 mRNA by RTPCR (reference standard for transcriptionally-active high risk HPV) and gathered detailed morphologic and clinicopathologic data.Thirteen patients from two institutions were proven to be HPV-associated by combined p16 and high risk HPV mRNA positivity. All 13 patients (100%) were males, all were heavy smokers (average 57 pack/year), and most were active drinkers (9/11 or 81.8%). All 13 (100%) involved the tongue and/or floor of mouth. All had nonkeratinizing features, but maturing squamous differentiation varied widely (0-90%; mean 37.3%). Nonkeratinizing areas had high N:C ratios and larger nests, frequently with pushing borders, and minimal (or no) stromal desmoplasia. The carcinoma in situ, when present, was Bowenoid/nonkeratinizing with cells with high N:C ratios, full thickness loss of maturation, and abundant apoptosis and mitosis. HPV was type 16 in 11 patients (84.6%) and type 33 in two (15.4%). Nine patients had treatment data available. These underwent primary surgical resection with tumors ranging from 1.6 to 5.2 cm. Most had bone invasion (6/9-66.7% were T4a tumors), and most (6/9-66.7%) had extensive SCC in situ with all 6 of these patients having final margins positive for in situ carcinoma.HPV-associated OCSCC is an uncommon entity that shows certain distinct clinical and pathologic features. Recognition of these features may help pathologic diagnosis and could potentially help guide clinical management.
Sinonasal Adenosquamous Carcinoma- Morphology and Genetic Drivers Including Low- and High-Risk Human Papillomavirus mRNA, DEK::AFF2 Fusion, and MAML2 Rearrangement

Head and neck pathology

2023 Feb 28

Holliday, D;Mehrad, M;Ely, KA;Tong, F;Wang, X;Hang, JF;Kuo, YJ;Velez-Torres, JM;Lott-Limbach, A;Lewis, JS;
PMID: 36849671 | DOI: 10.1007/s12105-023-01538-w

Sinonasal adenosquamous carcinoma is rare, and there are almost no studies detailing morphology or characterizing their genetic driver events. Further, many authors have termed sinonasal tumors with combined squamous carcinoma and glands as mucoepidermoid carcinoma but none have analyzed for the presence of MAML2 rearrangement.Cases from 2014 to 2020 were collected and diagnosed using World Health Organization criteria. They were tested for p16 expression by immunohistochemistry (70% cut-off), DEK::AFF2 fusion by fluorescence in situ hybridization (FISH) and AFF2 immunohistochemistry, MAML2 rearrangement by FISH, and low- and high-risk HPV by RNA ISH and reverse transcription PCR, respectively. Detailed morphology and clinical features were reviewed.There were 7 male (64%) and 4 female (36%) patients with a median age of 69 years, most Caucasian (10 of 11 or 91%). Most had tobacco exposure (8/11, 73%) and most presented with epistaxis, a visible nasal mass, and/or facial pain. Several had a precursor papillomas (3 of 11, 27%). The squamous component had variable keratinization, 5 of 11 (46%) of which would be described as keratinizing, 3 non-keratinizing, and 2 with mixed features. All had gland formation, by definition, and 2 of 11 (18%) had ciliated tumor cells. None of the 11 cases had MAML2 rearrangement and one had DEK::AFF2 fusion with associated positive nuclear AFF2 protein immunostaining. Most were p16 positive (7 of 11, 64%) and all 7 of these were hrHPV positive either by RNA ISH or RT-PCR. Two of the p16-negative tumors were positive for lrHPV by RNA ISH. Treatment included surgery alone (4 of 11, 36%), surgery with adjuvant radiation (5 of 11, 45%), and surgery with radiation and chemotherapy (2 of 11, 18%). Four of 11 patients (36%) suffered disease recurrence, two requiring re-operation and who were disease free at last follow-up, one receiving additional chemotherapy and who was alive with disease. The other elected to undergo palliative therapy and died of disease.Sinonasal adenosquamous carcinoma is a somewhat heterogeneous tumor not infrequently arising ex papilloma and having various drivers including high- and low-risk HPV and rarely DEK::AFF2 fusion. The prognosis appears favorable when proper treatment is possible.
Epstein‐Barr virus and human papillomaviruses as favorable prognostic factors in nasopharyngeal carcinoma: A nationwide study in Finland.

Head Neck. 2018 Dec 14.

2018 Dec 14

Ruuskanen M, Irjala H, Minn H, Vahlberg T, Randen-Brady R, Hagström J, Syrjänen S, Leivo I.
PMID: 30549170 | DOI: 10.1002/hed.25450

Abstract BACKGROUND: Nasopharyngeal carcinoma (NPC) is related to Epstein-Barr virus (EBV) in endemic areas; however, the role of viruses in nonendemic countries is unclear. Our nationwide study investigated the prevalence and prognostic significance of EBV and human papillomaviruses (HPVs) in Finnish NPC tumors. METHODS: We analyzed samples from 150 patients diagnosed between 1990 and 2009. Viral status was determined using EBV and HPV RNA in situ hybridizations, and p16 immunohistochemistry. Patient and treatment characteristics were obtained from patient records. RESULTS: In our white patient cohort, 93 of 150 (62%) patients were EBV-positive and 21/150 (14%) patients were HPV-positive with no coinfections. Thirty-six (24%) tumors were negative for both viruses. The 5-year disease-specific survival for patients with EBV-positive, HPV-positive, and EBV/HPV-negative tumors was 69%, 63%, and 39%, respectively. In multivariable-adjusted analysis, overall survival was better among patients with EBV-positive (P = .005) and HPV-positive (P = .03) tumors compared to patients with EBV/HPV-negative tumors. CONCLUSIONS: In our low-incidence population, EBV and HPV are important prognostic factors for NPC.
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?