ACD can configure probes for the various manual and automated assays for LONG for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Endocr Pathol.
2017 Dec 26
Zhang R, Hardin H, Huang W, Buehler D, Lloyd RV.
PMID: 29280051 | DOI: 10.1007/s12022-017-9507-2
Long non-coding RNAs (lncRNAs) may contribute to carcinogenesis and tumor progression by regulating transcription and gene expression. The role of lncRNAs in the regulation of thyroid cancer progression is being extensively examined. Here, we analyzed three lncRNAs that were overexpressed in papillary thyroid carcinomas, long intergenic non-protein coding RNA, regulator of reprogramming (Linc-ROR, ROR) PVT1 oncogene (PVT1), and HOX transcript antisense intergenic RNA (HOTAIR) to determine their roles in thyroid tumor development and progression. ROR expression has not been previously examined in thyroid carcinomas. Tissue microarrays (TMAs) of formalin-fixed paraffin-embedded tissue sections from 129 thyroid cases of benign and malignant tissues were analyzed by in situ hybridization (ISH), automated image analysis, and real-time PCR. All three lncRNAs were most highly expressed in the nuclei of PTCs. SiRNA experiments with a PTC cell line, TPC1, showed inhibition of proliferation with siRNAs for all three lncRNAs while invasion was inhibited with siRNAs for ROR and HOTAIR. SiRNA experiments with ROR also led to increased expression of miR-145, supporting the role of ROR as an endogenous miR-145 sponge. After treatment with TGF-β, there was increased expression of ROR, PVT1, and HOTAIR in the PTC1 cell line compared to control groups, indicating an induction of their expression during epithelial to mesenchymal transition (EMT). These results indicate that ROR, PVT1, and HOTAIR have important regulatory roles during the development of PTCs.
Endocr Pathol. 2019
2019 May 22
Yu Q, Hardin H, Chu YH, Rehrauer W, Lloyd RV.
PMID: 31119524 | DOI: 10.1007/s12022-019-9578-3
Parathyroid adenomas are slow growing benign neoplasms associated with hypercalcemia, while atypical parathyroid adenomas and parathyroid carcinomas are uncommon tumors and their histologic features may overlap with parathyroid adenomas. LncRNAs participate in transcription and in epigenetic or post-transcriptional regulation of gene expression, and probably contribute to carcinogenesis. We analyzed a group of normal, hyperplastic, and neoplastic parathyroid lesions to determine the best immunohistochemical markers to characterize these lesions and to determine the role of selected lncRNAs in tumor progression. A tissue microarray consisting of 111 cases of normal parathyroid (n = 14), primary hyperplasia (n = 15), secondary hyperplasia (n = 10), tertiary hyperplasia (n = 11), adenomas (n = 50), atypical adenomas (n = 7), and carcinomas (n = 4) was used. Immunohistochemical staining with antibodies against chromogranin A, synaptophysin, parathyroid hormone, and insulinoma-associated protein 1(INSM1) was used. Expression of lncRNAs including metastasis-associated lung adenocarcinoma transcript one (MALAT1), HOX transcript antisense intergenic RNA (HOTAIR), and long intergenic non-protein coding regulator of reprograming (Linc-ROR or ROR) was also analyzed by in situ hybridization and RT-PCR. All of the parathyroid tissues were positive for parathyroid hormone, while most cases were positive for chromogranin A (98%). Synaptophysin was expressed in only 12 cases (11%) and INMS1 was negative in all cases. ROR was significantly downregulated during progression from normal, hyperplastic, and adenomatous parathyroid to parathyroid carcinomas. These results show that parathyroid hormone and chromogranin A are useful markers for parathyroid neoplasms, while synaptophysin and INSM1 are not very sensitive broad-spectrum markers for these neoplasms. LincRNA ROR may function as a tumor suppressor during parathyroid tumor progression.
Cell.
2017 Feb 16
Williamson L, Saponaro M, Boeing S, East P, Mitter R, Kantidakis T, Kelly GP, Lobley A, Walker J, Spencer-Dene B, Howell M, Stewart A, Svejstrup JQ.
PMID: 28215706 | DOI: 10.1016/j.cell.2017.01.019
The transcription-related DNA damage response was analyzed on a genome-wide scale with great spatial and temporal resolution. Upon UV irradiation, a slowdown of transcript elongation and restriction of gene activity to the promoter-proximal ∼25 kb is observed. This is associated with a shift from expression of long mRNAs to shorter isoforms, incorporating alternative last exons (ALEs) that are more proximal to the transcription start site. Notably, this includes a shift from a protein-coding ASCC3 mRNA to a shorter ALE isoform of which the RNA, rather than an encoded protein, is critical for the eventual recovery of transcription. The non-coding ASCC3 isoform counteracts the function of the protein-coding isoform, indicating crosstalk between them. Thus, the ASCC3 gene expresses both coding and non-coding transcript isoforms with opposite effects on transcription recovery after UV-induced DNA damage.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com