The Journal of investigative dermatology
Luo, L;Pasquali, L;Srivastava, A;Freisenhausen, JC;Pivarcsi, A;Sonkoly, E;
PMID: 36641130 | DOI: 10.1016/j.jid.2022.12.011
Psoriasis is a common immune-mediated skin disease characterized by epidermal hyperproliferation and chronic skin inflammation. Long non-coding RNAs (lncRNAs) are >200 nucleotide long transcripts, which possess important regulatory functions. To date, little is known about the contribution of lncRNAs to psoriasis. Here, we identify LINC00958 as a lncRNA overexpressed in keratinocytes from psoriasis skin lesions, in a transcriptomic screen performed on keratinocytes sorted from psoriasis and healthy skin. Increased levels of LINC00958 in psoriasis keratinocytes were confirmed by RT-qPCR and single molecule in situ hybridization. Confocal microscopy and analysis of subcellular fractions showed that LINC00958 is mainly localized in the cytoplasm of keratinocytes. IL-17A, a key psoriasis cytokine, induced LINC00958 in keratinocytes through C/EBP-β and the p38 pathway. Inhibition of LINC00958 led to decreased proliferation as measured by Ki67 expression, IncuCyte imaging and EdU assays. Transcriptomic analysis of LINC00958-depleted keratinocytes revealed enrichment of proliferation and cell cycle-related genes among differentially expressed transcripts. Moreover, LINC00958-depletion led to decreased basal and IL-17A-induced phosphorylation of p38. Furthermore, IL-17A-induced keratinocyte proliferation was counteracted by the inhibition of LINC00958. In summary, our data support a role for the IL-17A-induced lncRNA, LINC00958, in the pathological circuits in psoriasis by reinforcing IL-17A-induced epidermal hyperproliferation.
American journal of physiology. Lung cellular and molecular physiology
Han, Y;Zhu, Y;Dutta, S;Almuntashiri, S;Wang, X;Zhang, D;
PMID: 36880658 | DOI: 10.1152/ajplung.00056.2022
Mammalian genomes encode thousands of long non-coding RNAs (lncRNAs). LncRNAs are extensively expressed in various immune cells. The lncRNAs have been reported to be involved in diverse biological processes, including the regulation of gene expression, dosage compensation, and genomic imprinting. However, very little research has been conducted to explore how they alter innate immune responses during host-pathogen interactions. In this study, we found that a lncRNA, named long non-coding RNA, embryonic stem cells expressed 1 (Lncenc1), was strikingly increased in mouse lungs after gram-negative (G-) bacterial infection or exposure to lipopolysaccharides (LPS). Interestingly, our data indicated that Lncenc1 was upregulated in macrophages but not primary epithelial cells (PEC) or polymorphonuclear leukocytes (PMN). The upregulation was also observed in human THP-1 and U937 macrophages. Besides, Lncenc1 was highly induced during ATP-induced inflammasome activation. Functionally, Lncenc1 showed pro-inflammatory effects in macrophages as demonstrated by increased expressions of cytokine and chemokines, as well as enhanced NF-κB promoter activity. Overexpression of Lncenc1 promoted the releases of IL-1β and IL-18, and Caspase-1 activity in macrophages, suggesting a role in inflammasome activation. Consistently, knockdown of Lncenc1 inhibited inflammasome activation in LPS-treated macrophages. Moreover, knockdown of Lncenc1 using antisense oligo (ASO)-loaded exosomes (EXO) attenuated LPS-induced lung inflammation in mice. Similarly, Lncenc1 deficiency protects mice from bacteria-induced lung injury and inflammasome activation. Taken together, our work identified Lncenc1 as a modulator of inflammasome activation in macrophages during bacterial infection. Our study suggested that Lncenc1 could serve as a therapeutic target for lung inflammation and injury.
Clinical science (London, England : 1979)
Yiu, WH;Lok, SW;Xue, R;Chen, J;Lai, KN;Lan, HY;Tang, SC;
PMID: 36705251 | DOI: 10.1042/CS20220537
Kidney inflammation contributes to the progression of chronic kidney disease (CKD). Modulation of Toll-like receptor 4 (TLR4) signaling is a potential therapeutic strategy for this pathology, but the regulatory mechanisms of TLR4 signaling in kidney tubular inflammation remains unclear. Here, we demonstrated that tubule-specific deletion of TLR4 in mice conferred protection against obstruction-induced kidney injury, with reduction in inflammatory cytokine production, macrophage infiltration and kidney fibrosis. Transcriptome analysis revealed a marked downregulation of long noncoding RNA (lncRNA) Meg3 in the obstructed kidney from tubule-specific TLR4 knockout mice compared to wild type control. Meg3 was also induced by LPS in tubular epithelial cells via a p53-dependent signaling pathway. Silencing of Meg3 suppressed LPS-induced cytokine production of CCL-2 and CXCL-2 and the activation of p38 MAPK pathway in vitro and ameliorated kidney fibrosis in mice with obstructive nephropathy. Together, these findings identify a proinflammatory role of lncRNA Meg3 in CKD and suggest a novel regulatory pathway in TLR4-driven inflammatory responses in tubular epithelial cells.
Wu F, Huang Y, Dong F, Kwon JH.
PMID: 26937624 | DOI: 10.1097/MIB.0000000000000691
BACKGROUND:
Long noncoding RNAs (lncRNAs) were recently found to be key regulators of biological functions and associated with human diseases. Thus far, the roles of lncRNAs in inflammatory bowel disease (IBD) remain unknown. We aimed to determine whether lncRNAs are associated with IBD and regulate epithelial cell physiology.
METHODS:
lncRNAs microarray and quantitative RT-PCR were performed on 60 sigmoid colon biopsies from patients with active ulcerative colitis (UC) and relevant controls. Localization of lncRNAs was detected by in situ hybridization and on subcellular RNA. The boundaries of BC012900 were assessed by 5' and 3'-rapid amplification of cDNA ends. Apoptosis and proliferation assays were performed on BC012900-expressing construct or siRNA-transfected cells.
RESULTS:
We identified 329 lncRNAs with increased and 126 lncRNAs with decreased expression in active UC tissues compared with normal control tissues, including the most significantly upregulated (BC012900, AK001903, and AK023330) and downregulated (BC029135, CDKN2B-AS1, and BC062296) transcripts. We found that most of the lncRNAs are localized to the nucleus. In particular, BC012900 expression was significantly increased in active UC and stimulated by cytokines and pathogenic molecules. Furthermore, BC012900 overexpression in epithelial cells results in a significant inhibition of cell proliferation and an increased susceptibility to apoptosis, which differ from its adjacent gene DUSP4.
CONCLUSIONS:
Multiple lncRNAs are differentially expressed in IBD and play a role in regulating cellular physiology. Our results indicate that lncRNAs may be integral modulators of intestinal inflammation associated with IBD and represent novel targets for future therapeutics and diagnostic marker development.
Journal of Dermatological Science
Xian, J;Shang, M;Dai, Y;Wang, Q;Long, X;Li, J;Cai, Y;Xia, C;Peng, X;
| DOI: 10.1016/j.jdermsci.2021.11.007
Background Psoriasis is a chronic, complicated, and recurrent inflammatory skin disease. However, the precise molecular mechanisms remain largely elusive and the present treatment is unsatisfactory. Objective This study aimed to unravel the functions of long noncoding RNA (lncRNA) AGAP2-AS1 and its biological mechanism in psoriasis pathogenesis, hinting for the new therapeutic targets in psoriasis. Methods The expression of AGAP2-AS1 in the skin tissue of psoriasis patients and healthy controls were detected by qRT-PCR and RNAscope™. Cell Counting Kit‑8 (CCK8) and clone formation assays were utilized to assess proliferation. Methylated RNA immunoprecipitation (MeRIP) was performed to detect the N6-methyladenosine (m6A) modification. RNA immunoprecipitation (RIP) was used to detect the interaction of AGAP2-AS1 with YTH domain family 2(YTHDF2). The relationships among AGAP2-AS1, miR-424-5p and AKT3 were examined by dual-luciferase reporter assay and RIP assay. Results We found that AGAP2-AS1 level was upregulated in the skin tissue of psoriasis patients than that of healthy controls and AGAP2-AS1 could promote proliferation and inhibit apoptosis of keratinocytes. Methyltransferase like 3(METTL3)-mediated m6A modification suppressed the expression of AGAP2-AS1 via YTHDF2-dependent AGAP2-AS1 stability. Thus, downregulation of METTL3 resulted in the upregulation of AGAP2-AS1 in psoriasis. AGAP2-AS1 functioned as a competitive endogenous RNA by sponging miR-424-5p to upregulate AKT3, activate AKT/mTOR pathway, as well as promote cell proliferation in keratinocytes. Conclusion AGAP2-AS1 is upregulated in the skin tissue of psoriasis patients and m6A methylation was involved in its upregulation. AGAP2-AS1 promotes keratinocyte proliferation through miR-424-5p/AKT/mTOR axis and may be a promising target for psoriasis therapy.
Geng H, Bu HF, Liu F, Wu L, Pfeifer K, Chou PM, Wang X, Sun J, Lu L, Pandey A, Bartolomei MS, De Plaen IG, Wang P, Yu J, Qian J, Tan XD.
PMID: 29621481 | DOI: 10.1053/j.gastro.2018.03.058
Abstract
BACKGROUND & AIMS:
Inflammation affects regeneration of the intestinal epithelia; long noncoding RNAs (lncRNAs) regulate cell functions, such as proliferation, differentiation, and migration. We investigated the mechanisms by which the lncRNA H19, imprinted maternally expressed transcript (H19) regulates regeneration of intestinal epithelium using cell cultures and mouse models of inflammation.
METHODS:
We performed RNA-sequencing transcriptome analyses of intestinal tissues from mice with lipopolysaccharide (LPS)-induced sepsis to identify lncRNAs associated with inflammation; findings were confirmed by quantitative real-time polymerase chain reaction and in situ hybridization analyses of intestinal tissues from mice with sepsis or dextran sulfate sodium (DSS)-induced mucosal wound healing and patients with ulcerative colitis compared to healthy individuals (controls). We screened cytokines for their ability to induce expression of H19 in HT-29 cells and intestinal epithelial cells (IECs), and confirmed findings in crypt epithelial organoids derived from mouse small intestine. IECs were incubated with different signal transduction inhibitors and effects on H19 lncRNA levels were measured. We assessed intestinal epithelial proliferation or regeneration in H19ΔEx1/+ mice given LPS or DSS vs wild-type littermates (control mice). H19 was overexpressed in IECs using lentiviral vectors and cell proliferation was measured. We performed RNA antisense purification, RNA immunoprecipitation, and luciferase reporter assays to study functions of H19 in IECs.
RESULTS:
In RNA-sequencing transcriptome analysis of lncRNA expression in intestinal tissues from mice, we found that levels of H19 lncRNA changed significantly with LPS exposure. Levels of H19 lncRNA increased in intestinal tissues of patients with ulcerative colitis, micewith LPS-induced and polymicrobial sepsis, or mice with DSS-induced colitis, compared with controls. Increased H19 lncRNA localized to epithelial cells in the intestine, regardless of Lgr5 messenger RNA expression. Exposure of IECs to interleukin 22 (IL22) increased levels of H19 lncRNA with time and dose, which required STAT3 and protein kinase A activity. IL22 induced expression of H19 in mouse intestinal epithelial organoids within 6 hours. Exposure to IL22 increased growth of intestinal epithelial organoids derived from control mice, but not H19ΔEx1/+ mice. Overexpression of H19 in HT-29 cells increased their proliferation. Intestinal mucosa healed more slowly after withdrawal of DSS from H19ΔEx1/+ mice vs control mice. Crypt epithelial cells from H19ΔEx1/+ mice proliferated more slowly than those from control miceafter exposure to LPS. H19 lncRNA bound to p53 and microRNAs that inhibit cell proliferation, including microRNA 34a and let-7; H19 lncRNA binding blocked their function, leading to increased expression of genes that promote regeneration of the epithelium.
CONCLUSIONS:
The level of lncRNA H19 is increased in inflamed intestinal tissues from mice and patients. The inflammatory cytokine IL22 induces expression of H19 in IECs, which is required for intestinal epithelial proliferation and mucosal healing. H19 lncRNA appears to inhibit p53 protein and microRNA 34a and let-7 to promote proliferation of IECs and epithelial regeneration.
Patel, RS;Lui, A;Hudson, C;Moss, L;Sparks, RP;Hill, SE;Shi, Y;Cai, J;Blair, LJ;Bickford, PC;Patel, NA;
PMID: 36609440 | DOI: 10.1038/s41598-022-27126-6
Shifts in normal aging set stage for neurodegeneration and dementia affecting 1 in 10 adults. The study demonstrates that lncRNA GAS5 is decreased in aged and Alzheimer's disease brain. The role and targets of lncRNA GAS5 in the aging brain were elucidated using a GAS5-targeting small molecule NPC86, a frontier in lncRNA-targeting therapeutic. Robust techniques such as molecular dynamics simulation of NPC86 binding to GAS5, in vitro functional assays demonstrating that GAS5 regulates insulin signaling, neuronal survival, phosphorylation of tau, and neuroinflammation via toll-like receptors support the role of GAS5 in maintaining healthy neurons. The study demonstrates the safety and efficacy of intranasal NPC86 treatment in aged mice to improve cellular functions with transcriptomic analysis in response to NPC86. In summary, the study demonstrates that GAS5 contributes to pathways associated with neurodegeneration and NPC86 has tremendous therapeutic potential to prevent the advent of neurodegenerative diseases and dementias.
Journal of Investigative Dermatology
Luo, L;Srivastava, A;Pasquali, L;Meisgen, F;
| DOI: 10.1016/j.jid.2021.08.205
Abstract Unavailable
Li, Y;Chen, B;Jiang, X;Li, Y;Huang, S;Xiao, Y;Shi, D;Huang, X;He, L;Chen, X;Ouyang, Y;Li, J;Song, L;Lin, C;
| DOI: 10.2139/ssrn.4287908
Alternative splicing (AS) is a critical mechanism for the aberrant biogenesis of long non-coding RNA (lncRNA). Although the role of Wnt signaling in AS has been implicated, it remains unclear how it mediates lncRNA splicing during cancer progression. Herein, we identify that Wnt3a induces a splicing switch of lncRNA-DGCR5 to generate a short variant (DGCR5-S) which correlates with poor prognosis in esophageal squamous cell carcinoma (ESCC). Upon Wnt3a stimulation, activated nuclear β-Catenin acts as a cofactor of FUS to facilitate the spliceosome assembly and the splicing generation of DGCR5-S. DGCR5-S inhibits TTP’s anti-inflammatory activity by protecting it from PP2A-mediated dephosphorylation, thus fostering tumor-promoting inflammation. Importantly, synthetic splice-switching oligonucleotides (SSO) disrupt the splicing switch of DGCR5 and potently suppress tumor growth of Patient-derived xenografts (PDXs). These findings uncover the mechanism for Wnt signaling in lncRNA splicing and suggest that the DGCR5 splicing switch may be a targetable vulnerability in ESCC.
McQueen, L;Ladak, S;Tavares, A;Murphy, G;Zakkar, M;
| DOI: 10.1136/heartjnl-2022-bcs.200
BACKGROUND The long saphenous vein (LSV) is commonly utilised in CABG surgery to facilitate revascularisation. However, over time these grafts develop intimal hyperplasia (IH) and accelerated atherosclerosis, leading to stenosis and occlusion. A common feature of IH is vascular calcification (VC) within the affected vessel. Recently, the matricellular protein osteopontin (OPN) has been implicated in this process at endothelial injury sites in porcine models, but this has not been expanded to humans. Consecutively, studies have implicated the arterial haemodynamic environment as a major driver of the pro-inflammatory conditions facilitating VC and IH. As such, treatment with a synthetic glucocorticoid, dexamethasone, which has proven beneficial in inhibiting IH in murine models, may beneficially modulate this process in humans. This work aims to assess the role of OPN on VC and IH in an ex vivo model, whether dexamethasone can modulate this process, and whether detection of VC in situ can act as a novel clinical monitoring approach to graft patency.
Journal of molecular and cellular cardiology
Ding, S;Liu, J;Han, X;Ding, W;Liu, Z;Zhu, Y;Zhan, W;Wan, Y;Gai, S;Hou, J;Wang, X;Wu, Y;Wu, A;Li, CY;Zheng, Z;Tian, XL;Cao, H;
PMID: 35714558 | DOI: 10.1016/j.yjmcc.2022.06.001
Long noncoding RNAs (lncRNAs) are critical regulators of inflammation with great potential as new therapeutic targets. However, the role of lncRNAs in early atherosclerosis remains poorly characterized. This study aimed to identify the key lncRNA players in activated endothelial cells (ECs). The lncRNAs in response to pro-inflammatory factors in ECs were screened through RNA sequencing. ICAM-1-related non-coding RNA (ICR) was identified as the most potential candidate for early atherosclerosis. ICR is essential for intercellular adhesion molecule-1 (ICAM1) expression, EC adhesion and migration. In a high fat diet-induced atherosclerosis model in mice, ICR is upregulated in the development of atherosclerosis. After intravenous injection of adenovirus carrying shRNA for mouse ICR, the atherosclerotic plaque area was markedly reduced with the declined expression of ICR and ICAM1. Mechanistically, ICR stabilized the mRNA of ICAM1 in quiescent ECs; while under inflammatory stress, ICR upregulated ICAM1 in a nuclear factor kappa B (NF-κB) dependent manner. RNA-seq analysis showed pro-inflammatory targets of NF-κB were regulated by ICR. Furthermore, the chromatin immunoprecipitation assays showed that p65 binds to ICR promoter and facilitates its transcription. Interestingly, ICR, in turn, promotes p65 accumulation and activity, forming a positive feedback loop to amplify NF-κB signaling. Preventing the degradation of p65 using proteasome inhibitors rescued the expression of NF-κB targets suppressed by ICR. Taken together, ICR acts as an accelerator to amplify NF-κB signaling in activated ECs and suppressing ICR is a promising early intervention for atherosclerosis through ICR/p65 loop blockade.
Li, X;Tian, BM;Deng, DK;Liu, F;Zhou, H;Kong, DQ;Qu, HL;Sun, LJ;He, XT;Chen, FM;
PMID: 35296649 | DOI: 10.1038/s41413-022-00197-x
Periodontal ligament stem cells (PDLSCs) are a key cell type for restoring/regenerating lost/damaged periodontal tissues, including alveolar bone, periodontal ligament and root cementum, the latter of which is important for regaining tooth function. However, PDLSCs residing in an inflammatory environment generally exhibit compromised functions, as demonstrated by an impaired ability to differentiate into cementoblasts, which are responsible for regrowing the cementum. This study investigated the role of mitochondrial function and downstream long noncoding RNAs (lncRNAs) in regulating inflammation-induced changes in the cementogenesis of PDLSCs. We found that the inflammatory cytokine-induced impairment of the cementogenesis of PDLSCs was closely correlated with their mitochondrial function, and lncRNA microarray analysis and gain/loss-of-function studies identified GACAT2 as a regulator of the cellular events involved in inflammation-mediated mitochondrial function and cementogenesis. Subsequently, a comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS) and parallel reaction monitoring (PRM) assays revealed that GACAT2 could directly bind to pyruvate kinase M1/2 (PKM1/2), a protein correlated with mitochondrial function. Further functional studies demonstrated that GACAT2 overexpression increased the cellular protein expression of PKM1/2, the PKM2 tetramer and phosphorylated PKM2, which led to enhanced pyruvate kinase (PK) activity and increased translocation of PKM2 into mitochondria. We then found that GACAT2 overexpression could reverse the damage to mitochondrial function and cementoblastic differentiation of PDLSCs induced by inflammation and that this effect could be abolished by PKM1/2 knockdown. Our data indicated that by binding to PKM1/2 proteins, the lncRNA GACAT2 plays a critical role in regulating mitochondrial function and cementogenesis in an inflammatory environment.