ACD can configure probes for the various manual and automated assays for LONG for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Endocr Pathol.
2017 Dec 26
Zhang R, Hardin H, Huang W, Buehler D, Lloyd RV.
PMID: 29280051 | DOI: 10.1007/s12022-017-9507-2
Long non-coding RNAs (lncRNAs) may contribute to carcinogenesis and tumor progression by regulating transcription and gene expression. The role of lncRNAs in the regulation of thyroid cancer progression is being extensively examined. Here, we analyzed three lncRNAs that were overexpressed in papillary thyroid carcinomas, long intergenic non-protein coding RNA, regulator of reprogramming (Linc-ROR, ROR) PVT1 oncogene (PVT1), and HOX transcript antisense intergenic RNA (HOTAIR) to determine their roles in thyroid tumor development and progression. ROR expression has not been previously examined in thyroid carcinomas. Tissue microarrays (TMAs) of formalin-fixed paraffin-embedded tissue sections from 129 thyroid cases of benign and malignant tissues were analyzed by in situ hybridization (ISH), automated image analysis, and real-time PCR. All three lncRNAs were most highly expressed in the nuclei of PTCs. SiRNA experiments with a PTC cell line, TPC1, showed inhibition of proliferation with siRNAs for all three lncRNAs while invasion was inhibited with siRNAs for ROR and HOTAIR. SiRNA experiments with ROR also led to increased expression of miR-145, supporting the role of ROR as an endogenous miR-145 sponge. After treatment with TGF-β, there was increased expression of ROR, PVT1, and HOTAIR in the PTC1 cell line compared to control groups, indicating an induction of their expression during epithelial to mesenchymal transition (EMT). These results indicate that ROR, PVT1, and HOTAIR have important regulatory roles during the development of PTCs.
Vascul Pharmacol.
2019 Mar 01
Chowdhury TA, Li K, Ramchandran R.
PMID: 30910126 | DOI: 10.1016/j.vph.2018.06.010
Pervasive transcription is a feature of the human genome that requires better understanding. Over the last decade or so, RNA species longer than 200 nucleotides-dubbed long non-coding RNA (lncRNAs)-had been found in sense or anti-sense orientation within or outside of genes that encode proteins. Importantly, lncRNA-mediated gene regulation and the elements that control lncRNA expression are a source of fascination among molecular biologists. In vascular biology, a dozen or so lncRNAs had been identified, and progress occurs each day. In this review, we highlighted our laboratories' contribution to the lncRNA field by discussing lessons learned from two lncRNAs in the tyrosine kinase containing immunoglobulin and epidermal growth factor homology1 (Tie1) and delta-like 4 (Dll4) loci. These genes are responsible for basic vascular patterning and pathophysiological remodeling in angiogenesis.
Hepatology
Wang F, Yuan JH, Wang SB, Yang F, Yuan SX, Ye C, Yang N, Zhou WP, Li WL, Li W, Sun SH
PMID: 10.1002/hep.27239
Arterioscler Thromb Vasc Biol.
2018 May 03
Chowdhury TA, Koceja C, Eisa-Beygi S, Kleinstiver BP, Kumar SN, Lin CW, Li K, Prabhudesai S, Joung JK, Ramchandran R.
PMID: 29724820 | DOI: 10.1161/ATVBAHA.118.310848
Abstract
OBJECTIVE:
Tie1 (tyrosine kinase containing immunoglobulin and epidermal growth factor homology 1), an endothelial and hematopoietic cell-specific receptor tyrosine kinase, is an important regulator of angiogenesis and critical for maintaining vascular integrity. The post-transcriptional regulation of tie1 mRNA expression is not understood, but it might partly explain Tie1's differential expression pattern in endothelium. Following up on our previous work that identified natural antisense transcripts from the tie1 locus-tie1 antisense (tie1AS), which regulates tie1 mRNA levels in zebrafish-we attempted to identify the mechanism of this regulation.
APPROACH AND RESULTS:
Through in vitro and in vivo ribonucleoprotein binding studies, we demonstrated that tie1AS long noncoding RNA interacts with an RNA binding protein-embryonic lethal and abnormal vision Drosophila-like 1 (Elavl1)-that regulates tie1 mRNA levels. When we disrupted the interaction between tie1AS and Elavl1 by using constitutively active antisense morpholino oligonucleotides or photoactivatable morpholino oligonucleotides, tie1 mRNA levels increased between 26 and 31 hours post-fertilization, particularly in the head. This increase correlated with dilation of primordial midbrain channels, smaller eyes, and reduced ventricular space. We also observed these phenotypes when we used CRISPR (clustered regularly interspaced short palindromic repeats)-mediated CRISPRi (CRISPR-mediated interference) to knock down tie1AS. Treatment of the morpholino oligonucleotide-injected embryos with a small molecule that decreased tie1mRNA levels rescued all 3 abnormal phenotypes.
CONCLUSIONS:
We identified a novel mode of temporal and spatial post-transcriptional regulation of tie1 mRNA. It involves long noncoding RNA, tie1AS, and Elavl1 (an interactor of tie1AS).
Science advances
2023 Feb 03
Sun, C;Ye, Y;Tan, Z;Liu, Y;Li, Y;Hu, W;Liang, K;Egranov, SD;Huang, LA;Zhang, Z;Zhang, Y;Yao, J;Nguyen, TK;Zhao, Z;Wu, A;Marks, JR;Caudle, AS;Sahin, AA;Gao, J;Gammon, ST;Piwnica-Worms, D;Hu, J;Chiao, PJ;Yu, D;Hung, MC;Curran, MA;Calin, GA;Ying, H;Han, L;Lin, C;Yang, L;
PMID: 36724291 | DOI: 10.1126/sciadv.add6995
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com