Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for LONG

ACD can configure probes for the various manual and automated assays for LONG for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

ACD’s data images for Long gene.

  • RNA expression of long gene in Human Colorectal cancer sample using RNAscope™ 2.5 HD Assay Brown

  • RNA expression of long gene in Human Gastric cancer sample using RNAscope™ 2.5 HD Assay Brown

  • RNA expression of long gene in Human Glioma sample using RNAscope™ 2.5 HD Assay Brown

  • RNA expression of long gene in Human Lung cancer sample using RNAscope™ 2.5 HD Assay Brown

  • RNA expression of long gene in Human ovarian cancer sample using RNAscope™ 2.5 HD Assay Brown

  • Expression of long in Human Prostate cancer sample using RNAscope™ 2.5 HD Assay Brown

  • Probes for Long (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (57)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • (-) Remove TBD filter TBD (57)
  • MALAT1 (13) Apply MALAT1 filter
  • H19 (7) Apply H19 filter
  • SARS-CoV-2 (7) Apply SARS-CoV-2 filter
  • HOTAIR (6) Apply HOTAIR filter
  • Neat1 (4) Apply Neat1 filter
  • Slc17a6 (4) Apply Slc17a6 filter
  • Slc17a7 (4) Apply Slc17a7 filter
  • SChLAP1 (4) Apply SChLAP1 filter
  • MEG3 (3) Apply MEG3 filter
  • Gad1 (3) Apply Gad1 filter
  • MMP13 (3) Apply MMP13 filter
  • GFAP (3) Apply GFAP filter
  • PVT1 (3) Apply PVT1 filter
  • Col2a1 (3) Apply Col2a1 filter
  • col10a1 (3) Apply col10a1 filter
  • UCA1 (3) Apply UCA1 filter
  • LINC00473 (3) Apply LINC00473 filter
  • EBER1 (3) Apply EBER1 filter
  • ACTA2 (2) Apply ACTA2 filter
  • GAPDH (2) Apply GAPDH filter
  • Alpl (2) Apply Alpl filter
  • Wnt5a (2) Apply Wnt5a filter
  • ICAM1 (2) Apply ICAM1 filter
  • FOS (2) Apply FOS filter
  • GREM1 (2) Apply GREM1 filter
  • PVALB (2) Apply PVALB filter
  • Sst (2) Apply Sst filter
  • Cdh13 (2) Apply Cdh13 filter
  • PDGFRA (2) Apply PDGFRA filter
  • Gad2 (2) Apply Gad2 filter
  • BCAR4 (2) Apply BCAR4 filter
  • Chat (2) Apply Chat filter
  • CXCL12 (2) Apply CXCL12 filter
  • GAS5 (2) Apply GAS5 filter
  • Pomc (2) Apply Pomc filter
  • CARTPT (2) Apply CARTPT filter
  • Runx2 (2) Apply Runx2 filter
  • TIE1 (2) Apply TIE1 filter
  • vGlut2 (2) Apply vGlut2 filter
  • Pnky (2) Apply Pnky filter
  • PD-L1 (2) Apply PD-L1 filter
  • RAD51-AS1 (2) Apply RAD51-AS1 filter
  • LINC01133 (2) Apply LINC01133 filter
  • LINK-A (2) Apply LINK-A filter
  • LpR2 (2) Apply LpR2 filter
  • LINC00958 (2) Apply LINC00958 filter
  • Lncenc1 (2) Apply Lncenc1 filter
  • ROR (2) Apply ROR filter
  • ELDR (2) Apply ELDR filter

Product

  • RNAscope (9) Apply RNAscope filter
  • RNAscope Multiplex Fluorescent Assay (4) Apply RNAscope Multiplex Fluorescent Assay filter
  • TBD (3) Apply TBD filter
  • DNAscope HD Duplex Reagent Kit (1) Apply DNAscope HD Duplex Reagent Kit filter

Research area

  • Neuroscience (8) Apply Neuroscience filter
  • LncRNAs (4) Apply LncRNAs filter
  • Cancer (3) Apply Cancer filter
  • Development (2) Apply Development filter
  • Infectious Disease (2) Apply Infectious Disease filter
  • lncRNA (2) Apply lncRNA filter
  • Bone (1) Apply Bone filter
  • Circadian clock (1) Apply Circadian clock filter
  • Develoment (1) Apply Develoment filter
  • Ear (1) Apply Ear filter
  • Endocrinology (1) Apply Endocrinology filter
  • Endrocrinology (1) Apply Endrocrinology filter
  • Hearing (1) Apply Hearing filter
  • Heart (1) Apply Heart filter
  • Inflammation (1) Apply Inflammation filter
  • Itch (1) Apply Itch filter
  • Jet Leg (1) Apply Jet Leg filter
  • lincRNAs (1) Apply lincRNAs filter
  • ncRNAs (1) Apply ncRNAs filter
  • Neuronal synaptic plasticity (1) Apply Neuronal synaptic plasticity filter
  • Other: Cell Biology (1) Apply Other: Cell Biology filter
  • Other: Genomics (1) Apply Other: Genomics filter
  • Other: Methods (1) Apply Other: Methods filter
  • Pain (1) Apply Pain filter
  • Photoperiods (1) Apply Photoperiods filter
  • Reproductiopn (1) Apply Reproductiopn filter
  • Senecavirus (1) Apply Senecavirus filter
  • sisRNAs (1) Apply sisRNAs filter
  • Zika Virus (1) Apply Zika Virus filter

Category

  • (-) Remove Publications filter Publications (57)
Long Noncoding RNA NEAT1: A Potential Biomarker in the Progression of Laryngeal Squamous Cell Carcinoma

ORL; journal for oto-rhino-laryngology and its related specialties

2021 Apr 08

Wang, P;Li, QY;Sun, YN;Wang, JT;Liu, M;
PMID: 33831864 | DOI: 10.1159/000515228

Laryngeal squamous cell carcinoma (LSCC) is diverse in its natural history and responsiveness to treatments. There is an urgent need to generate candidate biomarkers for the stratification and individualization of treatment to avoid overtreatment or inadequate treatment. Long noncoding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) has been identified as an oncogenic gene in multiple human tumors entitles, and dysregulation of NEAT1 was tightly linked to carcinogenesis and cancer progression. One hundred two paraffin samples of LSCC patients were collected. Furthermore, in situ hybridization (ISH), Kaplan-Meier, and MTT were used to analyze the relationship between NEAT1 and the progress of LSCC. In this study, ISH revealed that NEAT1 was strongly expressed in the nucleus. The increased expression of NEAT1 was correlated with T grade, neck nodal metastasis, clinical stage, drinking history, or smoking history of LSCC. The Kaplan-Meier analysis indicated that patients with higher NEAT1 expression had a worse overall survival in LSCC patients. In addition, NEAT1 knockdown significantly inhibited the growth of LSCC cells. Together, these results suggested that NEAT1 involved in the progress of LSCC and might act as a tumor oncogenic gene. This study provides a potential new marker and target for gene therapy in the treatment of LSCC.
Elucidating the role of long intergenic non-coding RNA 339 in human endometrium and endometriosis

Molecular human reproduction

2021 Feb 08

Holdsworth-Carson, SJ;Churchill, M;Donoghue, JF;Mortlock, S;Fung, JN;Sloggett, C;Chung, J;Cann, L;Teh, WT;Campbell, KR;Luwor, R;Healey, M;Montgomery, G;Girling, JE;Rogers, PAW;
PMID: 33576410 | DOI: 10.1093/molehr/gaab010

Endometriosis is a complex disease, influenced by genetic factors. Genetic markers associated with endometriosis exist at chromosome 1p36.12 and lead to altered expression of the long intergenic non-coding RNA 339 (LINC00339), however the role of LINC00339 in endometriosis pathophysiology remains unknown. The aim of this work was to characterise the expression patterns of LINC00339 mRNA in endometrium and endometriotic lesions in situ and to determine the functional role of LINC00339 in human endometrium. We employed RNA-sequencing, quantitative RT-PCR and in situ hybridisation to investigate the abundance of LINC00339 transcripts in endometrium and endometrial cell lines and to describe the pattern and localisation of LINC00339 expression in endometrium and endometriotic lesions. LINC00339 mRNA expression was manipulated (overexpressed and silenced) in endometrial stomal cell lines and RNA-sequencing data from overexpression models were analysed using online bioinformatics platforms (STRING and Ingenuity Pathway Analysis) to determine functional processes. We demonstrated the expression of LINC00339 in endometriotic lesions for the first time; we found LINC00339 expression was restricted to the lesion foci and absent in surrounding non-lesion tissue. Furthermore, manipulation of LINC00339 expression in endometrial stromal cell lines significantly impacted the expression of genes involved in immune defense pathways. These studies identify a novel mechanism for LINC00339 activity in endometrium and endometriosis, paving the way for future work, which is essential for understanding the pathogenesis of endometriosis.
Renal AAV2-Mediated Overexpression of Long Non-Coding RNA H19 Attenuates Ischemic Acute Kidney Injury Through Sponging of microRNA-30a-5p

Journal of the American Society of Nephrology : JASN

2021 Feb 01

Haddad, G;Kölling, M;Wegmann, UA;Dettling, A;Seeger, H;Schmitt, R;Soerensen-Zender, I;Haller, H;Kistler, AD;Dueck, A;Engelhardt, S;Thum, T;Mueller, TF;Wüthrich, RP;Lorenzen, JM;
PMID: 33478972 | DOI: 10.1681/ASN.2020060775

Renal ischemia-reperfusion (I/R) injury is a major cause of AKI. Noncoding RNAs are intricately involved in the pathophysiology of this form of AKI. Transcription of hypoxia-induced, long noncoding RNA H19, which shows high embryonic expression and is silenced in adults, is upregulated in renal I/R injury. Lentivirus-mediated overexpression, as well as antisense oligonucleotide-based silencing, modulated H19 in vitro. In vivo analyses used constitutive H19 knockout mice. In addition, renal vein injection of adeno-associated virus 2 (AAV2) carrying H19 caused overexpression in the kidney. Expression of H19 in kidney transplant patients with I/R injury was investigated. H19 is upregulated in kidney biopsies of patients with AKI, in murine ischemic kidney tissue, and in cultured and ex vivo sorted hypoxic endothelial cells (ECs) and tubular epithelial cells (TECs). Transcription factors hypoxia-inducible factor 1-α, LHX8, and SPI1 activate H19 in ECs and TECs. H19 overexpression promotes angiogenesis in vitro and in vivo. In vivo, transient AAV2-mediated H19 overexpression significantly improved kidney function, reduced apoptosis, and reduced inflammation, as well as preserving capillary density and tubular epithelial integrity. Sponging of miR-30a-5p mediated the effects, which, in turn, led to target regulation of Dll4, ATG5, and Snai1. H19 overexpression confers protection against renal injury by stimulating proangiogenic signaling. H19 overexpression may be a promising future therapeutic option in the treatment of patients with ischemic AKI.
Long Noncoding RNA MEG3 Expressed in Human Dental Pulp Regulates LPS-Induced Inflammation and Odontogenic Differentiation in Pulpitis

Experimental cell research

2021 Jan 29

Liu, M;Lingling, C;Wu, J;Lin, Z;Huang, S;
PMID: 33524362 | DOI: 10.1016/j.yexcr.2021.112495

Pulpitis refers to inflammation of the inner pulp by invading microbes, and tissue repair occurs due to odontogenic differentiation of human dental pulp cells (hDPCs) with multidifferentiation potential. Long noncoding RNAs (lncRNAs) can modulate numerous pathological and biological processes; however, the role of lncRNAs in the inflammation and regeneration of the dentin-pulp complex in pulpitis is unclear. Here, we performed high-throughput sequencing to identify differentially expressed lncRNAs between human normal and inflamed pulp and concluded that lncMEG3 (lncRNA maternally expressed gene 3, MEG3) was significantly upregulated in both inflamed pulp and LPS-treated hDPCs. MEG3 expression in the pulp tissue was detected using the RNAscope™ technique. RNA pulldown assays identified the MEG3-interacting proteins and the potential mechanisms. With MEG3 knockdown, we investigated the role of MEG3 in the secretion of inflammatory cytokines in LPS-treated hDPCs and odontogenic differentiation of hDPCs. MEG3 downregulation inhibited the secretion of TNF-α, IL-1β and IL-6 in LPS-treated hDPCs, and the p38/MAPK signaling pathway may be related to this effect. MEG3 knockdown promoted odontogenic differentiation of hDPCs by regulating the Wnt/β-catenin signaling pathway. Our study suggested that MEG3 has a negative effect on inflammation and regeneration of the dentin-pulp complex in pulpitis.
Preliminary RNA-microarray analysis of long non-coding RNA expression in abnormally invasive placenta

Exp Ther Med

2021 Jan 01

Zhang, H;Wu, S;Ye, S;Ma, H;Liu, Z;
PMID: 33235622 | DOI: 10.3892/etm.2020.9445

Long non-coding RNAs (lncRNAs) are reported to have important roles in placental development and function, but the role of lncRNAs in abnormally invasive placenta (AIP) remains elusive. In the present study, the differential expression profiles of lncRNAs were analyzed to identify novel targets for further study of AIP. A total of 10 lncRNAs were chosen for validation by reverse transcription-quantitative PCR. To further determine the functions of dysregulated lncRNAs and their corresponding mRNAs, functional enrichment analysis, coexpression analysis were performed. A total of 329 lncRNAs and 179 mRNAs were identified to be differently expressed between the invasive and control group. Gene ontology analysis revealed that the 10 most significantly enriched functions included upregulated mRNAs and the most significantly enriched term was related to the proteinaceous extracellular matrix (ECM). In the pathway analysis, the two most significantly enriched pathways were the TGF-β signaling pathway for upregulated mRNAs and the pentose phosphate pathway for downregulated mRNAs. Furthermore, for certain dysregulated lncRNAs, their associated mRNAs were also dysregulated. Of note, BMP and activin membrane-bound inhibitor and TGF-β-induced, as the target genes of the TGF-β pathway, were indicated to be closely related to the ECM and invasive placental cells. Their nearby lncRNAs G008916 and vault RNA2-1 were also significantly dysregulated. In conclusion, significant lncRNAs with the potential to serve as biomarkers for AIP were identified.
Oncogenic HPV promotes the expression of the long noncoding RNA lnc-FANCI-2 through E7 and YY1

Proceedings of the National Academy of Sciences of the United States of America

2021 Jan 19

Liu, H;Xu, J;Yang, Y;Wang, X;Wu, E;Majerciak, V;Zhang, T;Steenbergen, RDM;Wang, HK;Banerjee, NS;Li, Y;Lu, W;Meyers, C;Zhu, J;Xie, X;Chow, LT;Zheng, ZM;
PMID: 33436409 | DOI: 10.1073/pnas.2014195118

Long noncoding RNAs (lncRNAs) play diverse roles in biological processes, but their expression profiles and functions in cervical carcinogenesis remain unknown. By RNA-sequencing (RNA-seq) analyses of 18 clinical specimens and selective validation by RT-qPCR analyses of 72 clinical samples, we provide evidence that, relative to normal cervical tissues, 194 lncRNAs are differentially regulated in high-risk (HR)-HPV infection along with cervical lesion progression. One such lncRNA, lnc-FANCI-2, is extensively characterized because it is expressed from a genomic locus adjacent to the FANCI gene encoding an important DNA repair factor. Both genes are up-regulated in HPV lesions and in in vitro model systems of HR-HPV18 infection. We observe a moderate reciprocal regulation of lnc-FANCI-2 and FANCI in cervical cancer CaSki cells. In these cells, lnc-FANCI-2 is transcribed from two alternative promoters, alternatively spliced, and polyadenylated at one of two alternative poly(A) sites. About 10 copies of lnc-FANCI-2 per cell are detected preferentially in the cytoplasm. Mechanistically, HR-HPVs, but not low-risk (LR)-HPV oncogenes induce lnc-FANCI-2 in primary and immortalized human keratinocytes. The induction is mediated primarily by E7, and to a lesser extent by E6, mostly independent of p53/E6AP and pRb/E2F. We show that YY1 interacts with an E7 CR3 core motif and transactivates the promoter of lnc-FANCI-2 by binding to two critical YY1-binding motifs. Moreover, HPV18 increases YY1 expression by reducing miR-29a, which targets the 3' untranslated region of YY1 mRNA. These data have provided insights into the mechanisms of how HR-HPV infections contribute to cervical carcinogenesis.
Analysis of SNHG14: A Long Non-Coding RNA Hosting SNORD116, Whose Loss Contributes to Prader-Willi Syndrome Etiology

Genes

2022 Dec 29

Ariyanfar, S;Good, D;
| DOI: 10.3390/genes14010097

The Small Nucleolar Host Gene 14 (SNHG14) is a host gene for small non-coding RNAs, including the SNORD116 small nucleolar C/D box RNA encoding locus. Large deletions of the SNHG14 locus, as well as microdeletions of the SNORD116 locus, lead to the neurodevelopmental genetic disorder Prader-Willi syndrome. This review will focus on the SNHG14 gene, its expression patterns, its role in human cancer, and the possibility that single nucleotide variants within the locus contribute to human phenotypes in the general population. This review will also include new in silico data analyses of the SNHG14 locus and new in situ RNA expression patterns of the Snhg14 RNA in mouse midbrain and hindbrain regions.
255 PVT1 is overexpressed and acts as an oncogenic long non-coding RNA in cutaneous squamous cell carcinoma

Journal of Investigative Dermatology

2021 Oct 01

Li, C;Mahapatra, K;Sun, C;Lapins, J;Sonkoly, E;Kähäri, V;Pivarcsi, A;
| DOI: 10.1016/j.jid.2021.08.261

Abstract Unavailable
Long noncoding RNA TINCR is a novel regulator of human bronchial epithelial cell differentiation state

Physiological reports

2021 Feb 01

Omote, N;Sakamoto, K;Li, Q;Schupp, JC;Adams, T;Ahangari, F;Chioccioli, M;DeIuliis, G;Hashimoto, N;Hasegawa, Y;Kaminski, N;
PMID: 33527707 | DOI: 10.14814/phy2.14727

Long-noncoding RNAs (lncRNAs) have numerous biological functions controlling cell differentiation and tissue development. The knowledge about the role of lncRNAs in human lungs remains limited. Here we found the regulatory role of the terminal differentiation-induced lncRNA (TINCR) in bronchial cell differentiation. RNA in situ hybridization revealed that TINCR was mainly expressed in bronchial epithelial cells in normal human lung. We performed RNA sequencing analysis of normal human bronchial epithelial cells (NHBECs) with or without TINCR inhibition and found the differential expression of 603 genes, which were enriched for cell adhesion and migration, wound healing, extracellular matrix organization, tissue development and differentiation. To investigate the role of TINCR in the differentiation of NHBECs, we employed air-liquid interface culture and 3D organoid formation assay. TINCR was upregulated during differentiation, loss of TINCR significantly induced an early basal-like cell phenotype (TP63) and a ciliated cell differentiation (FOXJ1) in late phase and TINCR overexpression suppressed basal cell phenotype and the differentiation toward to ciliated cells. Critical regulators of differentiation such as SOX2 and NOTCH genes (NOTCH1, HES1, and JAG1) were significantly upregulated by TINCR inhibition and downregulated by TINCR overexpression. RNA immunoprecipitation assay revealed that TINCR was required for the direct bindings of Staufen1 protein to SOX2, HES1, and JAG1 mRNA. Loss of Staufen1 induced TP63, SOX2, NOTCH1, HES1, and JAG1 mRNA expressions, which TINCR overexpression suppressed partially. In conclusion, TINCR is a novel regular of bronchial cell differentiation, affecting downstream regulators such as SOX2 and NOTCH genes, potentially in coordination with Staufen1.
Distinct biogenesis pathways may have led to functional divergence of the human and Drosophila Arglu1 sisRNA

EMBO reports

2022 Dec 19

Chan, SN;Pek, JW;
PMID: 36533631 | DOI: 10.15252/embr.202154350

Stable intronic sequence RNAs (sisRNAs) are stable, long noncoding RNAs containing intronic sequences. While sisRNAs have been found across diverse species, their level of conservation remains poorly understood. Here we report that the biogenesis and functions of a sisRNA transcribed from the highly conserved Arglu1 locus are distinct in human and Drosophila melanogaster. The Arglu1 genes in both species show similar exon-intron structures where the intron 2 is orthologous and positionally conserved. In humans, Arglu1 sisRNA retains the entire intron 2 and promotes host gene splicing. Mechanistically, Arglu1 sisRNA represses the splicing-inhibitory activity of ARGLU1 protein by binding to ARGLU1 protein and promoting its localization to nuclear speckles, away from the Arglu1 gene locus. In contrast, Drosophila dArglu1 sisRNA forms via premature cleavage of intron 2 and represses host gene splicing. This repression occurs through a local accumulation of dARGLU1 protein and inhibition of telescripting by U1 snRNPs at the dArglu1 locus. We propose that distinct biogenesis of positionally conserved Arglu1 sisRNAs in both species may have led to functional divergence.
Somatosensory neurons express specific sets of lincRNAs, and lincRNA CLAP promotes itch sensation in mice

EMBO reports

2022 Dec 16

Wang, B;Jiang, B;Li, GW;Dong, F;Luo, Z;Cai, B;Wei, M;Huang, J;Wang, K;Feng, X;Tong, F;Wang, S;Wang, Q;Han, Q;Li, C;Zhang, X;Yang, L;Bao, L;
PMID: 36524339 | DOI: 10.15252/embr.202154313

Somatosensory neurons are highly heterogeneous with distinct types of neural cells responding to specific stimuli. However, the distribution and roles of cell-type-specific long intergenic noncoding RNAs (lincRNAs) in somatosensory neurons remain largely unexplored. Here, by utilizing droplet-based single-cell RNA-seq (scRNA-seq) and full-length Smart-seq2, we show that lincRNAs, but not coding mRNAs, are enriched in specific types of mouse somatosensory neurons. Profiling of lincRNAs from single neurons located in dorsal root ganglia (DRG) identifies 200 lincRNAs localized in specific types or subtypes of somatosensory neurons. Among them, the conserved cell-type-specific lincRNA CLAP associates with pruritus and is abundantly expressed in somatostatin (SST)-positive neurons. CLAP knockdown reduces histamine-induced Ca2+ influx in cultured SST-positive neurons and in vivo reduces histamine-induced scratching in mice. In vivo knockdown of CLAP also decreases the expression of neuron-type-specific and itch-related genes in somatosensory neurons, and this partially depends on the RNA binding protein MSI2. Our data reveal a cell-type-specific landscape of lincRNAs and a function for CLAP in somatosensory neurons in sensory transmission.
Far from home: the role of glial mRNA localization in synaptic plasticity

RNA (New York, N.Y.)

2022 Nov 28

Gala, DS;Titlow, JS;Teodoro, RO;Davis, I;
PMID: 36442969 | DOI: 10.1261/rna.079422.122

Neurons and glia are highly polarized cells, whose distal cytoplasmic functional subdomains require specific proteins. Neurons have axonal and dendritic cytoplasmic extensions containing synapses requiring mRNA transport and localized translation to regulate synaptic plasticity efficiently. The principles behind these mechanisms are equally attractive for explaining rapid local regulation of distal glial cytoplasmic projections, independent of their cell nucleus. However, in contrast to neurons, this topic has received little experimental attention in glia. Nevertheless, there are many functionally diverse glial sub-types, containing extensive networks of long cytoplasmic projections with likely localized regulation that influence neurons and their synapses. Moreover, glia have many other neuron-like properties, including electrical activity, secretion of gliotransmitters and calcium signaling, influencing for example synaptic transmission, plasticity and axon pruning. Here, we review previous studies concerning glial transcripts with important roles in influencing synaptic plasticity, focusing on a few cases involving localized translation. We discuss a variety of important questions about mRNA transport and localized translation in glia that remain to be addressed using cutting-edge tools already available for neurons.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?