Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for LONG

ACD can configure probes for the various manual and automated assays for LONG for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

ACD’s data images for Long gene.

  • RNA expression of long gene in Human Colorectal cancer sample using RNAscope™ 2.5 HD Assay Brown

  • RNA expression of long gene in Human Gastric cancer sample using RNAscope™ 2.5 HD Assay Brown

  • RNA expression of long gene in Human Glioma sample using RNAscope™ 2.5 HD Assay Brown

  • RNA expression of long gene in Human Lung cancer sample using RNAscope™ 2.5 HD Assay Brown

  • RNA expression of long gene in Human ovarian cancer sample using RNAscope™ 2.5 HD Assay Brown

  • Expression of long in Human Prostate cancer sample using RNAscope™ 2.5 HD Assay Brown

  • Probes for Long (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (4)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • (-) Remove TBD filter TBD (4)
  • ACTA2 (2) Apply ACTA2 filter
  • Gad1 (2) Apply Gad1 filter
  • Cdh13 (2) Apply Cdh13 filter
  • Slc17a7 (2) Apply Slc17a7 filter
  • ANGPT2 (1) Apply ANGPT2 filter
  • Ostn (1) Apply Ostn filter
  • Rbfox3 (1) Apply Rbfox3 filter
  • CCL5 (1) Apply CCL5 filter
  • Sp7 (1) Apply Sp7 filter
  • COL1A1 (1) Apply COL1A1 filter
  • Fcrls (1) Apply Fcrls filter
  • Htt (1) Apply Htt filter
  • Neat1 (1) Apply Neat1 filter
  • DRD1 (1) Apply DRD1 filter
  • ICAM1 (1) Apply ICAM1 filter
  • FOS (1) Apply FOS filter
  • PTPRD (1) Apply PTPRD filter
  • GATA5 (1) Apply GATA5 filter
  • GFAP (1) Apply GFAP filter
  • HES1 (1) Apply HES1 filter
  • IDO1 (1) Apply IDO1 filter
  • Trpc6 (1) Apply Trpc6 filter
  • Sst (1) Apply Sst filter
  • LOC646329 (1) Apply LOC646329 filter
  • Stxbp6 (1) Apply Stxbp6 filter
  • MKI67 (1) Apply MKI67 filter
  • PDGFRA (1) Apply PDGFRA filter
  • Gad2 (1) Apply Gad2 filter
  • H19 (1) Apply H19 filter
  • Nlgn2 (1) Apply Nlgn2 filter
  • Foxl1 (1) Apply Foxl1 filter
  • TXNIP (1) Apply TXNIP filter
  • Neurod6 (1) Apply Neurod6 filter
  • Ascl1 (1) Apply Ascl1 filter
  • Bdnf (1) Apply Bdnf filter
  • CHRM2 (1) Apply CHRM2 filter
  • Cdh5 (1) Apply Cdh5 filter
  • Grin2c (1) Apply Grin2c filter
  • Chat (1) Apply Chat filter
  • Slc17a6 (1) Apply Slc17a6 filter
  • Ms4a7 (1) Apply Ms4a7 filter
  • Pomc (1) Apply Pomc filter
  • Dmd (1) Apply Dmd filter
  • MAF (1) Apply MAF filter
  • CARTPT (1) Apply CARTPT filter
  • Wif1 (1) Apply Wif1 filter
  • Grin1 (1) Apply Grin1 filter
  • Tshz2 (1) Apply Tshz2 filter
  • Nr4a1 (1) Apply Nr4a1 filter

Product

  • (-) Remove RNAscope Multiplex Fluorescent Assay filter RNAscope Multiplex Fluorescent Assay (4)

Research area

  • Neuroscience (2) Apply Neuroscience filter
  • Circadian clock (1) Apply Circadian clock filter
  • Jet Leg (1) Apply Jet Leg filter
  • Other: Cell Biology (1) Apply Other: Cell Biology filter
  • Other: Methods (1) Apply Other: Methods filter
  • Pain (1) Apply Pain filter

Category

  • Publications (4) Apply Publications filter
Cholecystokinin neurons in mouse suprachiasmatic nucleus regulate the robustness of circadian clock

Neuron

2023 May 07

Xie, L;Xiong, Y;Ma, D;Shi, K;Chen, J;Yang, Q;Yan, J;
PMID: 37172583 | DOI: 10.1016/j.neuron.2023.04.016

The suprachiasmatic nucleus (SCN) can generate robust circadian behaviors in mammals under different environments, but the underlying neural mechanisms remained unclear. Here, we showed that the activities of cholecystokinin (CCK) neurons in the mouse SCN preceded the onset of behavioral activities under different photoperiods. CCK-neuron-deficient mice displayed shortened free-running periods, failed to compress their activities under a long photoperiod, and developed rapid splitting or became arrhythmic under constant light. Furthermore, unlike vasoactive intestinal polypeptide (VIP) neurons, CCK neurons are not directly light sensitive, but their activation can elicit phase advance and counter light-induced phase delay mediated by VIP neurons. Under long photoperiods, the impact of CCK neurons on SCN dominates over that of VIP neurons. Finally, we found that the slow-responding CCK neurons control the rate of recovery during jet lag. Together, our results demonstrated that SCN CCK neurons are crucial for the robustness and plasticity of the mammalian circadian clock.
Analysis of mitochondrial double-stranded RNAs in human cells

STAR Protocols

2023 Mar 01

Kim, S;Yoon, J;Lee, K;Kim, Y;
| DOI: 10.1016/j.xpro.2022.102007

Human mitochondrial genome is transcribed bidirectionally, generating long complementary RNAs that can form double-stranded RNAs (mt-dsRNAs). When released to the cytosol, these mt-dsRNAs can activate antiviral signaling. Here, we present a detailed protocol for the analysis of mt-dsRNA expression. The protocol provides three approaches that can complement one another in examining mt-dsRNAs. While the described protocol is optimized for human cells, this approach can be adapted for use in other animal cell lines and tissue samples. For complete details on the use and execution of this protocol, please refer to Kim et al. (2022).1
The Midbody and Midbody Remnant are Assembly Sites for RNA and Localized Translation

Available at SSRN 

2023 Jan 30

Park, S;Dahn, R;Kurt, E;Presle, A;VandenHeuvel, K;Moravec, C;Jambhekar, A;Olukoga, O;Shepherd, J;Echard, A;Blower, M;Skop, A;
| DOI: 10.2139/ssrn.4318824

The midbody (MB) is a transient structure at the spindle midzone that is required for cytokinesis, the terminal stage of cell division. Long ignored as a vestigial remnant of cytokinesis, we now know MBs are released post-abscission as extracellular vesicles called MB remnants (MBRs) and can modulate cell proliferation, fate decisions, tissue polarity, neuronal architecture, and tumorigenic behavior. Here, we demonstrate that the MB matrix—the structurally amorphous MB core of unknown composition—is the site of ribonucleoprotein assembly and is enriched in mRNAs that encode proteins involved in cell fate, oncogenesis, and pluripotency, that we are calling the MB granule. Using a quantitative transcriptomic approach, we identified a population of mRNAs enriched in mitotic MBs and confirmed their presence in signaling MBR vesicles released by abscission. The MB granule is unique in that it is translationally active, contains both small and large ribosomal subunits, and has both membrane-less and membranebound states. Both MBs and post-abscission MBRs are sites of spatiotemporally regulated translation, which is initiated when nascent daughter cells re-enter G1 and continues after extracellular release. We demonstrate that the MB is the assembly site of an RNP granule. MKLP1 and ARC are necessary for the localization and translation of RNA in the MB dark zone, whereas ESCRT-III was necessary to maintain translation levels in the MB. Our data suggest a model in which the MB functions as a novel RNA-based organelle with a uniquely complex life cycle. We present a model in which the assembly and transfer of RNP complexes are central to post-mitotic MBR function and suggest the MBR serves as a novel mode of RNA-based intercellular communication with a defined biogenesis that is coupled to abscission, and inherently links cell division status with signaling capacity. To our knowledge, this is the first example of an autonomous extracellular vesicle with active translation activity.
Post-surgical latent pain sensitization is driven by descending serotonergic facilitation and masked by µ-opioid receptor constitutive activity (MORCA) in the rostral ventromedial medulla

The Journal of neuroscience : the official journal of the Society for Neuroscience

2022 Jun 13

Cooper, AH;Hedden, NS;Prasoon, P;Qi, Y;Taylor, BK;
PMID: 35701159 | DOI: 10.1523/JNEUROSCI.2038-21.2022

Following tissue injury, latent sensitization (LS) of nociceptive signaling can persist indefinitely, kept in remission by compensatory µ-opioid receptor constitutive activity (MORCA) in the dorsal horn of the spinal cord. To demonstrate LS, we conducted plantar incision in mice and then waited 3-4 weeks for hypersensitivity to resolve. At this time (remission), systemic administration of the opioid receptor antagonist/inverse agonist naltrexone reinstated mechanical and heat hypersensitivity. We first tested the hypothesis that LS extends to serotonergic neurons in the rostral ventral medulla (RVM) that convey pronociceptive input to the spinal cord. We report that in male and female mice, hypersensitivity was accompanied by increased Fos expression in serotonergic neurons of the RVM, abolished upon chemogenetic inhibition of RVM 5-HT neurons, and blocked by intrathecal injection of the 5-HT3R antagonist ondansetron; the 5-HT2AR antagonist MDL-11,939 had no effect. Second, to test for MORCA, we microinjected the MOR inverse agonist CTAP and/or neutral opioid receptor antagonist 6β-naltrexol. Intra-RVM CTAP produced mechanical hypersensitivity at both hindpaws. 6β-naltrexol had no effect by itself, but blocked CTAP-induced hypersensitivity. This indicates that MORCA, rather than an opioid ligand-dependent mechanism, maintains LS in remission. We conclude that incision establishes LS in descending RVM 5-HT neurons that drives pronociceptive 5-HT3R signaling in the dorsal horn, and this LS is tonically opposed by MORCA in the RVM. The 5-HT3 receptor is a promising therapeutic target for the development of drugs to prevent the transition from acute to chronic post-surgical pain.Significance statementSurgery leads to latent pain sensitization and a compensatory state of endogenous pain control that is maintained long after tissue healing. Here we show that either chemogenetic inhibition of serotonergic neuron activity in the rostral ventromedial medulla (RVM), or pharmacological inhibition of 5-HT3 receptor signaling at the spinal cord blocks behavioral signs of post-surgical latent sensitization. We conclude that µ-opioid receptor constitutive activity (MORCA) in the RVM opposes descending serotonergic facilitation of LS, and that the 5-HT3 receptor is a promising therapeutic target for the development of drugs to prevent the transition from acute to chronic post-surgical pain.
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?