Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics
Nemeth, CL;Gӧk, Ö;Tomlinson, SN;Sharma, A;Moser, AB;Kannan, S;Kannan, RM;Fatemi, A;
PMID: 36207570 | DOI: 10.1007/s13311-022-01311-x
X-linked adrenoleukodystrophy (ALD) is a genetic disorder that presents neurologically as either a rapid and fatal cerebral demyelinating disease in childhood (childhood cerebral adrenoleukodystrophy; ccALD) or slow degeneration of the spinal cord in adulthood (adrenomyeloneuropathy; AMN). All forms of ALD result from mutations in the ATP Binding Cassette Subfamily D Member (ABCD) 1 gene, encoding a peroxisomal transporter responsible for the import of very long chain fatty acids (VLCFA) and results mechanistically in a complex array of dysfunction, including endoplasmic reticulum stress, oxidative stress, mitochondrial dysfunction, and inflammation. Few therapeutic options exist for these patients; however, an additional peroxisomal transport protein (ABCD2) has been successfully targeted previously for compensation of dysfunctional ABCD1. 4-Phenylbutyrate (4PBA), a potent activator of the ABCD1 homolog ABCD2, is FDA approved, but use for ALD has been stymied by a short half-life and thus a need for unfeasibly high doses. We conjugated 4PBA to hydroxyl polyamidoamine (PAMAM) dendrimers (D-4PBA) to a create a long-lasting and intracellularly targeted approach which crosses the blood-brain barrier to upregulate Abcd2 and its downstream pathways. Across two studies, Abcd1 knockout mice administered D-4PBA long term showed neurobehavioral improvement and increased Abcd2 expression. Furthermore, when the conjugate was administered early, significant reduction of VLCFA and improved survival of spinal cord neurons was observed. Taken together, these data show improved efficacy of D-4PBA compared to previous studies of free 4PBA alone, and promise for D-4PBA in the treatment of complex and chronic neurodegenerative diseases using a dendrimer delivery platform that has shown successes in recent clinical trials. While recovery in our studies was partial, combined therapies on the dendrimer platform may offer a safe and complete strategy for treatment of ALD.
Duan, Y;Yue, K;Ye, B;Chen, P;Zhang, J;He, Q;Wu, Y;Lai, Q;Li, H;Wu, Y;Jing, C;Wang, X;
PMID: 36813772 | DOI: 10.1038/s41419-023-05667-6
Long non-coding RNAs (LncRNAs) are implicated in malignant progression of human cancers. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a well-known lncRNA, has been reported to play crucial roles in multiple malignancies including head and neck squamous cell carcinoma (HNSCC). However, the underlying mechanisms of MALAT1 in HNSCC progression remain to be further investigated. Here, we elucidated that compared with normal squamous epithelium, MALAT1 was notably upregulated in HNSCC tissues, especially in which was poorly differentiated or with lymph nodes metastasis. Moreover, elevated MALAT1 predicted unfavorable prognosis of HNSCC patients. The results of in vitro and in vivo assays showed that targeting MALAT1 could significantly weaken the capacities of proliferation and metastasis in HNSCC. Mechanistically, MALAT1 inhibited von Hippel-Lindau tumor suppressor (VHL) by activating EZH2/STAT3/Akt axis, then promoted the stabilization and activation of β-catenin and NF-κB which could play crucial roles in HNSCC growth and metastasis. In conclusion, our findings reveal a novel mechanism for malignant progression of HNSCC and suggest that MALAT1 might be a promising therapeutic target for HNSCC treatment.
Computational intelligence and neuroscience
Zhao, Y;Yan, G;Mi, J;Wang, G;Yu, M;Jin, D;Tong, X;Wang, X;
PMID: 35528328 | DOI: 10.1155/2022/8400106
Long noncoding RNA (lncRNA) is involved in the occurrence and development of diabetic kidney disease (DKD). It is necessary to identify the expression of lncRNA from DKD patients through systematic reviews, and then carry out silico analyses to recognize the dysregulated lncRNA and their associated pathways.The study searched Pubmed, Embase, Cochrane Library, WanFang, VIP, CNKI, and CBM to find lncRNA studies on DKD published before March 1, 2021. Systematic review of the literature on this topic was conducted to determine the expression of lncRNA in DKD and non-DKD controls. For the dysregulated lncRNA in DKD patients, silico analysis was performed, and lncRNA2Target v2.0 and starBase were used to search for potential target genes of lncRNA. The Encyclopedia of Genomics (KEGG) pathway enrichment analysis was performed to better identify dysregulated lncRNAs in DKD and determine the associated signal pathways.According to the inclusion and exclusion criteria, 28 publications meeting the eligibility criteria were included in the systematic evaluation. A total of 3,394 patients were enrolled in this study, including 1,238 patients in DKD group, and 1,223 diabetic patients, and 933 healthy adults in control group. Compared with the control, there were eight lncRNA disorders in DKD patients (MALAT1, GAS5, MIAT, CASC2, NEAT1, NR_033515, ARAP1-AS2, and ARAP1-AS1). In addition, five lncRNAs (MALAT1, GAS5, MIAT, CASC2, and NEAT1) participated in disease-related signal pathways, indicating their role in DKD. Discussion. This study showed that there were eight lncRNAs in DKD that were persistently dysregulated, especially five lncRNAs which were closely related to the disease. Although systematic review included 28 studies that analyzed the expression of lncRNA in DKD-related tissues, the potential of these dysregulated lncRNAs as biomarkers or therapeutic targets for DKD remains to be further explored. Trial registration. PROSPERO (CRD42021248634).