ACD can configure probes for the various manual and automated assays for LONG for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Vascul Pharmacol.
2019 Mar 01
Chowdhury TA, Li K, Ramchandran R.
PMID: 30910126 | DOI: 10.1016/j.vph.2018.06.010
Pervasive transcription is a feature of the human genome that requires better understanding. Over the last decade or so, RNA species longer than 200 nucleotides-dubbed long non-coding RNA (lncRNAs)-had been found in sense or anti-sense orientation within or outside of genes that encode proteins. Importantly, lncRNA-mediated gene regulation and the elements that control lncRNA expression are a source of fascination among molecular biologists. In vascular biology, a dozen or so lncRNAs had been identified, and progress occurs each day. In this review, we highlighted our laboratories' contribution to the lncRNA field by discussing lessons learned from two lncRNAs in the tyrosine kinase containing immunoglobulin and epidermal growth factor homology1 (Tie1) and delta-like 4 (Dll4) loci. These genes are responsible for basic vascular patterning and pathophysiological remodeling in angiogenesis.
Arterioscler Thromb Vasc Biol.
2018 May 03
Chowdhury TA, Koceja C, Eisa-Beygi S, Kleinstiver BP, Kumar SN, Lin CW, Li K, Prabhudesai S, Joung JK, Ramchandran R.
PMID: 29724820 | DOI: 10.1161/ATVBAHA.118.310848
Abstract
OBJECTIVE:
Tie1 (tyrosine kinase containing immunoglobulin and epidermal growth factor homology 1), an endothelial and hematopoietic cell-specific receptor tyrosine kinase, is an important regulator of angiogenesis and critical for maintaining vascular integrity. The post-transcriptional regulation of tie1 mRNA expression is not understood, but it might partly explain Tie1's differential expression pattern in endothelium. Following up on our previous work that identified natural antisense transcripts from the tie1 locus-tie1 antisense (tie1AS), which regulates tie1 mRNA levels in zebrafish-we attempted to identify the mechanism of this regulation.
APPROACH AND RESULTS:
Through in vitro and in vivo ribonucleoprotein binding studies, we demonstrated that tie1AS long noncoding RNA interacts with an RNA binding protein-embryonic lethal and abnormal vision Drosophila-like 1 (Elavl1)-that regulates tie1 mRNA levels. When we disrupted the interaction between tie1AS and Elavl1 by using constitutively active antisense morpholino oligonucleotides or photoactivatable morpholino oligonucleotides, tie1 mRNA levels increased between 26 and 31 hours post-fertilization, particularly in the head. This increase correlated with dilation of primordial midbrain channels, smaller eyes, and reduced ventricular space. We also observed these phenotypes when we used CRISPR (clustered regularly interspaced short palindromic repeats)-mediated CRISPRi (CRISPR-mediated interference) to knock down tie1AS. Treatment of the morpholino oligonucleotide-injected embryos with a small molecule that decreased tie1mRNA levels rescued all 3 abnormal phenotypes.
CONCLUSIONS:
We identified a novel mode of temporal and spatial post-transcriptional regulation of tie1 mRNA. It involves long noncoding RNA, tie1AS, and Elavl1 (an interactor of tie1AS).
J Hematol Oncol.
2019 Feb 22
Li J, Hao Y, Mao W, Xue X, Xu P, Liu L, Yuan J, Zhang D, Li N, Chen H, Zhao L, Sun Z, Luo J, Chen R, Zhao RC.
PMID: 30795783 | DOI: 10.1186/s13045-019-0707-8
Abstract
BACKGROUND:
Increasing evidence has demonstrated that mesenchymal stem cells (MSCs) play a role in the construction of tumor microenvironments. Co-culture between tumor cells and MSCs provides an easy and useful platform for mimicking tumor microenvironments and identifying the important members involved in tumor progress. The long non-coding RNAs (lncRNAs) have been shown to regulate different tumorigenic processes. In this study, we aimed to examine functional lncRNA deregulations associated with breast cancer malignancy instigated by MSC-MCF-7 co-culture.
METHODS:
The microarrays were used to profile the expression changes of lncRNAs in MCF-7 cells during epithelial-mesenchymal transition (EMT) induced by co-culture with MSCs. We found that an intergenic lncRNA KB-1732A1.1 (termed LincK, partly overlapped with GASL1) was significantly elevated. To investigate the biological function of LincK, the expression of EMT markers, cell migration, invasion, proliferation, and colony formation were evaluated in vitro and xenograft assay in nude mice were performed in vivo. Furthermore, we detected LincK expression in clinical samples using RNAscope™ technology and verified aberrant expression of LincK in breast cancer data sets from The Cancer Genome Atlas (TCGA) by bioinformatic analysis. The underlying mechanisms of LincK were investigated using mRNA microarray analyses, Western blot, RNA pull down, and RNA immunoprecipitation.
RESULTS:
LincK induced an EMT progress in breast cancer cells (BCC) MCF-7, MDA-MB-453, and MDA-MB-231. The depletion of LincK decreased the growth, migration, and invasion in BCC, whereas the overexpression of LincK exerted the opposite effects. Moreover, knockdown of LincK repressed tumorigenesis, and ectopic expression of LincK promoted tumor growth in MCF-7 xenograft model. LincK ablation in MDA-MB-231 cells dramatically impaired lung metastasis when incubated intravenously into nude mice. Further, LincK was frequently elevated in breast cancer compared with normal breast tissue in clinical samples. Mechanistically, LincK may share common miRNA response elements with PBK and ZEB1 and regulate the effects of miR-200 s.
CONCLUSION:
LincK plays a significant role in regulating EMT and tumor growth and could be a potential therapeutic target in breast cancer.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com