Lee, YJ;Kang, SG;Kim, CH;
PMID: 37369491 | DOI: 10.21873/invivo.13236
To determine the expression of long non-coding RNA urothelial cancer-associated 1 (UCA1) by performing array-based quantitative polymerase chain reaction (PCR) and to identify the clinicopathological significance of UCA1 expression in prostate cancer using in situ hybridization (ISH) of surgically resected specimens.Array-based quantitative PCR was performed using 10 pairs of fresh malignant (prostate cancer) and normal tissue samples to determine UCA1 expression. Single-color RNA ISH of surgically resected prostate cancer specimens was performed using 70 formalin-fixed, paraffin-embedded tissue specimens to examine the clinicopathological significance of UCA1.Prostate cancer tissues exhibited higher levels of UCA1 expression than paired benign tissues. Furthermore, a correlation between high UCA1 expression and unfavourable clinicopathological characteristics, including advanced pathologic T stage, extraprostatic extension, presence of Gleason pattern 5, and involvement of the resection margins was observed. Notably, increased UCA1 expression significantly correlated with high- or very-high-risk patients, as defined by the 2023 National Comprehensive Cancer Network guidelines.UCA1 could be used as a novel diagnostic and prognostic biomarker for establishing an effective treatment protocol for prostate cancer.
Nat Commun. 2018 Oct 22;9(1):4386.
Liu J, Li Y, Tong J, Gao J, Guo Q, Zhang L, Wang B, Zhao H, Wang H, Jiang E, Kurita R, Nakamura Y, Tanabe O, Engel JD, Bresnick EH, Zhou J, Shi L.
PMID: 30349036 | DOI: 10.1038/s41467-018-06883-x
In addition to serving as a prosthetic group for enzymes and a hemoglobin structural component, heme is a crucial homeostatic regulator of erythroid cell development and function. While lncRNAs modulate diverse physiological and pathological cellular processes, their involvement in heme-dependent mechanisms is largely unexplored. In this study, we elucidated a lncRNA (UCA1)-mediated mechanism that regulates heme metabolism in human erythroid cells. We discovered that UCA1 expression is dynamically regulated during human erythroid maturation, with a maximal expression in proerythroblasts. UCA1 depletion predominantly impairs heme biosynthesis and arrests erythroid differentiation at the proerythroblast stage. Mechanistic analysis revealed that UCA1 physically interacts with the RNA-binding protein PTBP1, and UCA1 functions as an RNA scaffold to recruit PTBP1 to ALAS2 mRNA, which stabilizes ALAS2 mRNA. These results define a lncRNA-mediated posttranscriptional mechanism that provides a new dimension into how the fundamental heme biosynthetic process is regulated as a determinant of erythrocyte development.
Molecular therapy : the journal of the American Society of Gene Therapy
Shi, L;Yang, Y;Li, M;Li, C;Zhou, Z;Tang, G;Wu, L;Yao, Y;Shen, X;Hou, Z;Jia, H;
PMID: 35051616 | DOI: 10.1016/j.ymthe.2022.01.003
Oral squamous cell carcinoma (OSCC), which is typically preceded by oral leukoplakia (OL), is a common malignancy with poor prognosis. However, the signaling molecules governing this progression remain to be defined. Based on microarray analysis of genes expressed in OL and OSCC samples, we discovered that the long non-coding RNA IFITM4P was highly expressed in OSCC, and ectopic expression or knockdown of IFITM4P resulted in increased or decreased cell proliferation in vitro and in xenografted tumors, respectively. Mechanistically, in the cytoplasm IFITM4P acted as a scaffold to facilitate recruiting SASH1 to bind and phosphorylate TAK1 (Thr187), and in turn to increase the phosphorylation of nuclear factor κB (Ser536) and concomitant induction of PD-L1 expression, resulting in activation of an immunosuppressive program that allows OL cells to escape anti-cancer immunity in cytoplasm. In nucleus, IFITM4P reduced Pten transcription by enhancing the binding of KDM5A to the Pten promoter, thereby upregulating PD-L1 in OL cells. Moreover, mice bearing tumors with high IFITM4P expression had notable therapeutic sensitivity to PD-1 monoclonal antibody (mAb) treatment. Collectively, these data demonstrate that IFITM4P may serve as a new therapeutic target in blockage of oral carcinogenesis, and PD-1 mAb can be an effective reagent to treat OSCC.
Oncol Rep. 2018 Nov;40(5):2497-2506.
Lebrun L, Milowich D, Le Mercier M, Allard J, Van Eycke YR, Roumeguere T, Decaestecker C, Salmon I, Rorive S.
PMID: 30226613 | DOI: 10.3892/or.2018.6697
Non‑coding RNAs (ncRNAs) have been shown to serve important roles in carcinogenesis via complex mechanisms, including transcriptional and post‑transcriptional regulation, and chromatin interactions. Urothelial carcinoma‑associated 1 (UCA1), a long ncRNA, was recently shown to have tumorigenic properties in urothelial bladder cancer (UBC), as demonstrated by enhanced proliferation, migration, invasion and therapy resistance of UBC cell lines in vitro. These in vitro findings suggested that UCA1 is associated with aggressive tumor behavior and could have prognostic implications in UBC. The aims of the present study were to therefore to investigate the statistical associations between UCA1 RNA expression and UBC pathological features, patient prognosis and p53 and Ki‑67 expression. Chromogenic in situ hybridization and immunohistochemistry were performed on UBC tissue microarrays to characterize UCA1 RNA, and p53 and Ki‑67 expression in 208 UBC cases, including 145 non‑muscle‑invasive and 63 muscle‑invasive cases. UCA1 was observed in the tumor cells of 166/208 (80%) UBC cases tested. No expression was noted in normal stromal and endothelium cells. Patients with UBC that overexpressed UCA1 (35%) had a significantly higher survival rate (P=0.006) compared with that in patients with UBC that did not overexpress UCA1. This prognostic factor was independent of tumor morphology, concomitant carcinoma in situ, tumor grade and tumor stage. In addition, the absence of UCA1 overexpression was significantly associated with a high Ki‑67 proliferative index (P=0.008) and a p53 'mutated' immunoprofile (strong nuclear expression or complete absence of staining; P=0.003). In conclusion, the present results identified UCA1 as potentially being a novel independent prognostic marker in UBC that was associated with a better patient prognosis and that could serve a pivotal role in bladder cancer carcinogenesis.