ACD can configure probes for the various manual and automated assays for INSULIN for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Nature metabolism
2021 Dec 01
Porniece Kumar, M;Cremer, AL;Klemm, P;Steuernagel, L;Sundaram, S;Jais, A;Hausen, AC;Tao, J;Secher, A;Pedersen, TÅ;Schwaninger, M;Wunderlich, FT;Lowell, BB;Backes, H;Brüning, JC;
PMID: 34931084 | DOI: 10.1038/s42255-021-00499-0
Molecular Metabolism
2018 Feb 22
Lin HV, Wang J, Wang J, Li W, Wang X, Alston JT, Thomas MK, Briere DA, Syed SK, Efanov AM.
PMID: - | DOI: 10.1016/j.molmet.2018.02.008
Abstract
Objective
GPR142 agonists are being pursued as novel diabetes therapies by virtue of their insulin secretagogue effects. But it is undetermined whether GPR142’s functions in pancreatic islets are limited to regulating insulin secretion. The current study expands research on its action.
Methods and Results
We demonstrated by in situ hybridization and immunostaining that GPR142 is expressed not only in β cells but also in a subset of α cells. Stimulation of GPR142 by a selective agonist increased glucagon secretion in both human and mouse islets. More importantly, the GPR142 agonist also potentiated glucagon-like peptide-1 (GLP-1) production and its release from islets through a mechanism that involves upregulation of prohormone convertase 1/3 expression. Strikingly, stimulation of insulin secretion and increase in insulin content via GPR142 engagement requires intact GLP-1 receptor signaling. Furthermore, GPR142 agonist increased β cell proliferation and protected both mouse and human islets against stress-induced apoptosis.
Conclusions
Collectively, we provide here evidence that local GLP-1 release from α cells defines GPR142’s beneficial effects on improving β cell function and mass, and we propose that GPR142 agonism may have translatable and durable efficacy for the treatment of type 2 diabetes.
Nat Commun
2020 Jan 23
Engstr�m Ruud L Pereira MMA, de Solis AJ, Fenselau H Br�ning JC
PMID: 31974377 | DOI: 10.1038/s41467-020-14291-3
Cell Rep.
2018 Oct 09
Timper K, Paeger L, Sánchez-Lasheras C, Varela L, Jais A, Nolte H, Vogt MC, Hausen AC, Heilinger C, Evers N, Pospisilik JA, Penninger JM, Taylor EB, Horvath TL, Kloppenburg P, Brüning JC.
PMID: 30304679 | DOI: 10.1016/j.celrep.2018.09.034
Mitochondrial oxidative phosphorylation (OXPHOS) and substrate utilization critically regulate the function of hypothalamic proopiomelanocortin (POMC)-expressing neurons. Here, we demonstrate that inactivation of apoptosis-inducing factor (AIF) in POMC neurons mildly impairs mitochondrial respiration and decreases firing of POMC neurons in lean mice. In contrast, under diet-induced obese conditions, POMC-Cre-specific inactivation of AIF prevents obesity-induced silencing of POMC neurons, translating into improved glucose metabolism, improved leptin, and insulin sensitivity, as well as increased energy expenditure in AIFΔPOMC mice. On a cellular level, AIF deficiency improves mitochondrial morphology, facilitates the utilization of fatty acids for mitochondrial respiration, and increases reactive oxygen species (ROS) formation in POMC neurons from obese mice, ultimately leading to restored POMC firing upon HFD feeding. Collectively, partial impairment of mitochondrial function shifts substrate utilization of POMC neurons from glucose to fatty acid metabolism and restores their firing properties, resulting in improved systemic glucose and energy metabolism in obesity.
Nature metabolism
2023 Jan 01
Liu, H;He, Y;Bai, J;Zhang, C;Zhang, F;Yang, Y;Luo, H;Yu, M;Liu, H;Tu, L;Zhang, N;Yin, N;Han, J;Yan, Z;Scarcelli, NA;Conde, KM;Wang, M;Bean, JC;Potts, CHS;Wang, C;Hu, F;Liu, F;Xu, Y;
PMID: 36593271 | DOI: 10.1038/s42255-022-00701-x
Molecular Metabolism
2018 Nov 20
Tooke BP, Yu H, Adams JM, Jones GL, Sutton-Kennedy T, Mundada L, Qi NR, Low MJ, Chhabra KH.
PMID: - | DOI: 10.1016/j.molmet.2018.11.004
Life-threatening hypoglycemia is a major limiting factor in the management of diabetes. While it is known that counterregulatory responses to hypoglycemia are impaired in diabetes, molecular mechanisms underlying the reduced responses remain unclear. Given the established roles of the hypothalamic proopiomelanocortin (POMC)/melanocortin 4 receptor (MC4R) circuit in regulating sympathetic nervous system (SNS) activity and the SNS in stimulating counterregulatory responses to hypoglycemia, we hypothesized that hypothalamic POMC as well as MC4R, a receptor for POMC derived melanocyte stimulating hormones, is required for normal hypoglycemia counterregulation.
To test the hypothesis, we induced hypoglycemia or glucopenia in separate cohorts of mice deficient in either POMC or MC4R in the arcuate nucleus (ARC) or the paraventricular nucleus of the hypothalamus (PVH), respectively, and measured their circulating counterregulatory hormones. In addition, we performed a hyperinsulinemic-hypoglycemic clamp study to further validate the function of MC4R in hypoglycemia counterregulation. We also measured Pomc and Mc4r mRNA levels in the ARC and PVH, respectively, in the streptozotocin-induced type 1 diabetes mouse model and non-obese diabetic (NOD) mice to delineate molecular mechanisms by which diabetes deteriorates the defense systems against hypoglycemia. Finally, we treated diabetic mice with the MC4R agonist MTII, administered stereotaxically into the PVH, to determine its potential for restoring the counterregulatory response to hypoglycemia in diabetes.
Stimulation of epinephrine and glucagon release in response to hypoglycemia or glucopenia was diminished in both POMC- and MC4R-deficient mice, relative to their littermate controls. Similarly, the counterregulatory response was impaired in association with decreased hypothalamic Pomc and Mc4r expression in the diabetic mice, a phenotype that was not reversed by insulin treatment which normalized glycemia. In contrast, infusion of an MC4R agonist in the PVH restored the counterregulatory response in diabetic mice.
In conclusion, hypothalamic Pomc as well as Mc4r, both of which are reduced in type 1 diabetic mice, are required for normal counterregulatory responses to hypoglycemia. Therefore, enhancing MC4R function may improve hypoglycemia counterregulation in diabetes.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com