ACD can configure probes for the various manual and automated assays for INSULIN for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Diabetes
2019 Apr 22
Wollam J, Riopel M, Xu YJ, Johnson AMF, Ofrecio JM, Ying W, El Ouarrat D, Chan LS, Han AW, Mahmood NA, Ryan CN, Lee YS, Watrous JD, Chordia MD, Pan D, Jain M, Olefsky JM.
PMID: 31010956 | DOI: 10.2337/db18-1307
The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)-induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon-like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota. Overall, we describe a new mechanism by which the gut microbiota can modulate glucose metabolism, providing a potential approach for treatment of metabolic disease.
Endocrinology.
2016 Oct 12
Burt PM, Xiao L, Dealy C, Fisher MC, Hurley MM.
PMID: 27732085 | DOI: 10.1210/en.2016-1548
Humans with X-linked hypophosphatemia (XLH) and Hyp mice, the murine homologue of the disease, develop severe osteoarthropathy and the precise factors that contribute to this joint degeneration remain largely unknown. Fibroblast growth factor 2 (FGF2) is a key regulatory growth factor in osteoarthritis. Although there are multiple FGF2 isoforms the potential involvement of specific FGF2 isoforms in joint degradation has not been investigated. Mice that overexpress the high molecular weight FGF2 isoforms in bone (HMWTg mice) phenocopy Hyp mice and XLH subjects and Hyp mice overexpress the HMWFGF2 isoforms in osteoblasts and osteocytes. Since Hyp mice and XLH subjects develop osteoarthropathies we examined whether HMWTg mice also develop knee joint degeneration at 2, 8, and 18-month-old compared with VectorTg (control) mice. HMWTg mice developed spontaneous osteoarthropathy as early as 2 months of age with thinning of subchondral bone, osteophyte formation, decreased articular cartilage thickness, abnormal mineralization within the joint, increased cartilage degradative enzymes, hypertrophic markers, and angiogenesis. FGF receptors 1 and 3 and fibroblast growth factor 23 were significantly altered compared to VectorTg mice. In addition, gene expression of growth factors and cytokines including bone morphogenetic proteins, Insulin like growth factor 1, Interleukin 1 beta, as well transcription factors Sex determining region Y box 9, hypoxia inducible factor 1 and nuclear factor kappa B subunit 1 were differentially modulated in HMWTg compared with VectorTg. This study demonstrates that overexpression of the HMW isoforms of FGF2 in bone results in catabolic activity in joint cartilage and bone that leads to osteoarthropathy.
Mol Pharmacol.
2017 Sep 11
Pronin A, Wang Q, Slepak VZ.
PMID: 28893976 | DOI: 10.1124/mol.117.109678
Pilocarpine is a prototypical drug used to treat glaucoma and dry mouth and classified as either a full or partial muscarinic agonist. Here, we report several unexpected results pertaining to its interaction with muscarinic M3 receptor (M3R). We found that pilocarpine was 1,000 times less potent in stimulating mouse eye pupil constriction than muscarinic agonists oxotremorin-M (Oxo-M) or carbachol (CCh), even though all three ligands have similar Kd values for M3R. In contrast to CCh or Oxo-M, pilocarpine does not induce Ca2+ mobilization via endogenous M3R in HEK293T or mouse insulinoma MIN6 cells. Pilocarpine also fails to stimulate insulin secretion, and instead, antagonizes insulinotropic effect of Oxo-M and CCh-induced Ca2+ upregulation. However, in HEK293T or CHO-K1 cells overexpressing M3R, pilocarpine induces Ca2+ transients like those recorded with another Gq-coupled muscarinic receptor, M1R. Stimulation of cells overexpressing M1R or M3R with CCh resulted in a similar reduction in PIP2. In contrast to CCh, pilocarpine stimulated PIP2 hydrolysis only in cells overexpressing M1R, but not M3R. Moreover, pilocarpine blocked CCh-stimulated PIP2 hydrolysis in M3R-overexpressing cells, thus, it acted as an antagonist. Pilocarpine activates ERK1/2 in MIN6 cells. The stimulatory effect on ERK1/2 was blocked by the Src family kinase inhibitor PP2, indicating that the action of pilocarpine on endogenous M3R is biased toward β-arrestin. Taken together, our findings show that pilocarpine can act as either an agonist or antagonist of M3R, depending on the cell type, expression level and signaling pathway downstream of this receptor.
Diabetologia
2017 Dec 09
Xia JY, Sun K, Hepler C, Ghaben AL, Gupta RK, An YA, Holland WL, Morley TS, Adams AC, Gordillo R, Kusminski CM, Scherer PE.
PMID: 29224189 | DOI: 10.1007/s00125-017-4516-8
Abstract
AIM/HYPOTHESIS:
Adiponectin (APN), a circulating hormone secreted by mature adipocytes, has been extensively studied because it has beneficial metabolic effects. While many studies have focused on the congenital loss of APN and its effects on systemic body glucose and lipid metabolism, little is known about the effects triggered by acute loss of APN in the adult mouse. We anticipated that genetically induced acute depletion of APN in adult mice would have a more profound effect on systemic metabolic health than congenital deletion of Adipoq, the gene encoding APN, with its associated potential for adaptive responses that may mask the phenotypes.
METHODS:
Mice carrying loxP-flanked regions of Adipoq were generated and bred to the Adipoq (APN) promoter-driven reverse tetracycline-controlled transactivator (rtTA) (APN-rtTA) gene and a tet-responsive Cre line (TRE-Cre) to achieve acute depletion of APN. Upon acute removal of APN in adult mice, systemic glucose and lipid homeostasis were assessed under basal and insulinopenic conditions.
RESULTS:
The acute depletion of APN results in more severe systemic insulin resistance and hyperlipidaemia than in mice with congenital loss of APN. Furthermore, the acute depletion of APN in adult mice results in a much more dramatic reduction in survival rate, with 50% of inducible knockouts dying in the first 5 days under insulinopenic conditions compared with 0% of congenital Adipoq knockout mice under similar conditions.
CONCLUSIONS/INTERPRETATION:
Acute systemic removal of APN results in a much more negative metabolic phenotype compared with congenital knockout of Adipoq. Specifically, our data demonstrate that acute depletion of APN is especially detrimental to lipid homeostasis, both under basal and insulinopenic conditions. This suggests that compensatory mechanisms exist in congenital knockout mice that offset some of the metabolic actions covered by APN.
Physiol Rep.
2017 Dec 12
Ronn J, Jensen EP, Wewer Albrechtsen NJ, Holst JJ, Sorensen CM.
PMID: 29233907 | DOI: 10.14814/phy2.13503
Glucagon-like peptide-1 (GLP-1) is an incretin hormone increasing postprandial insulin release. GLP-1 also induces diuresis and natriuresis in humans and rodents. The GLP-1 receptor is extensively expressed in the renal vascular tree in normotensive rats where acute GLP-1 treatment leads to increased mean arterial pressure (MAP) and increased renal blood flow (RBF). In hypertensive animal models, GLP-1 has been reported both to increase and decrease MAP. The aim of this study was to examine expression of renal GLP-1 receptors in spontaneously hypertensive rats (SHR) and to assess the effect of acute intrarenal infusion of GLP-1. We hypothesized that GLP-1 would increase diuresis and natriuresis and reduce MAP in SHR. Immunohistochemical staining and in situ hybridization for the GLP-1 receptor were used to localize GLP-1 receptors in the kidney. Sevoflurane-anesthetized normotensive Sprague-Dawley rats and SHR received a 20 min intrarenal infusion of GLP-1 and changes in MAP, RBF, heart rate, dieresis, and natriuresis were measured. The vasodilatory effect of GLP-1 was assessed in isolated interlobar arteries from normo- and hypertensive rats. We found no expression of GLP-1 receptors in the kidney from SHR. However, acute intrarenal infusion of GLP-1 increased MAP, RBF, dieresis, and natriuresis without affecting heart rate in both rat strains. These results suggest that the acute renal effects of GLP-1 in SHR are caused either by extrarenal GLP-1 receptors activating other mechanisms (e.g., insulin) to induce the renal changes observed or possibly by an alternative renal GLP-1 receptor.
Peptides.
2017 Dec 28
Fernandez-Cachon ML, Pedersen SL, Rigbolt KT, Zhang C, Fabricius K, Hansen HH, Elster L, Fink LN, Schäfer M, Rhee NA, Langholz E, Wandall E, Friis SU, Vilmann P, Kristiansen VB, Schmidt C, Schreiter K, Breitschopf K, Hübschle T, Jorsal T, Vilsbøll T, Schm
PMID: 29289697 | DOI: 10.1016/j.peptides.2017.12.024
Abstract
AIM:
To determine whether intestinal expression of guanylate cyclase activator 2A (GUCA2A) and guanylate cyclase activator 2B (GUCA2B) genes is regulated in obese humans following Roux-en-Y gastric bypass (RYGB), and to evaluate the corresponding guanylin (GN) and uroguanylin (UGN) peptides for potentially contributing to the beneficial metabolic effects of RYGB.
METHODS:
Enteroendocrine cells were harvested peri- and post-RYGB, and GUCA2A/GUCA2B mRNA expression was compared. GN, UGN and their prohormones (proGN, proUGN) were administered subcutaneously in normal-weight mice to evaluate effects on food intake and glucose regulation. The effect of pro-UGN or UGN overexpression, using adeno-associated virus (AAV) vectors, was assessed in diet-induced obese (DIO) mice. Intracerebroventricular administration of GN and UGN was performed in rats for assessment of putative centrally mediated effects on food intake. GN and UGN, as well as their prohormones, were evaluated for effects on glucose-stimulated insulin secretion (GSIS) in rat pancreatic islets and perfused rat pancreas.
RESULTS:
GUCA2A and GUCA2B mRNA expression was significantly upregulated in enteroendocrine cells after RYGB. Peripheral administration of guanylins or prohormones did not influence food intake, oral glucose tolerance, and GSIS. Central administration of GN and UGN did not affect food intake in rats. Chronic AVV-mediated overexpression of UGN and proUGN had no effect on body weight or glucose homeostasis in DIO mice.
CONCLUSION:
GN and UGN, as well as their prohormones, do not seem to play a significant role in body weight regulation and glycemic control, suggesting that guanylin-family peptides do not show promise as targets for the treatment of obesity or diabetes.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com