Barnett, KC;Xie, Y;Asakura, T;Song, D;Liang, K;Taft-Benz, SA;Guo, H;Yang, S;Okuda, K;Gilmore, RC;Loome, JF;Oguin Iii, TH;Sempowski, GD;Randell, SH;Heise, MT;Lei, YL;Boucher, RC;Ting, JP;
PMID: 36563691 | DOI: 10.1016/j.chom.2022.12.005
Elevated levels of cytokines IL-1β and IL-6 are associated with severe COVID-19. Investigating the underlying mechanisms, we find that while primary human airway epithelia (HAE) have functional inflammasomes and support SARS-CoV-2 replication, they are not the source of IL-1β released upon infection. In leukocytes, the SARS-CoV-2 E protein upregulates inflammasome gene transcription via TLR2 to prime, but not activate, inflammasomes. SARS-CoV-2-infected HAE supply a second signal, which includes genomic and mitochondrial DNA, to stimulate leukocyte IL-1β release. Nuclease treatment, STING, and caspase-1 inhibition but not NLRP3 inhibition blocked leukocyte IL-1β release. After release, IL-1β stimulates IL-6 secretion from HAE. Therefore, infection alone does not increase IL-1β secretion by either cell type. Rather, bi-directional interactions between the SARS-CoV-2-infected epithelium and immune bystanders stimulates both IL-1β and IL-6, creating a pro-inflammatory cytokine circuit. Consistent with these observations, patient autopsy lungs show elevated myeloid inflammasome gene signatures in severe COVID-19.
Rapid endotheliitis and vascular damage characterize SARS-CoV-2 infection in a human lung-on-chip model
Thacker, VV;Sharma, K;Dhar, N;Mancini, GF;Sordet-Dessimoz, J;McKinney, JD;
PMID: 33908688 | DOI: 10.15252/embr.202152744
Severe cases of SARS-CoV-2 infection are characterized by hypercoagulopathies and systemic endotheliitis of the lung microvasculature. The dynamics of vascular damage, and whether it is a direct consequence of endothelial infection or an indirect consequence of an immune cell-mediated cytokine storm remain unknown. Using a vascularized lung-on-chip model, we find that infection of alveolar epithelial cells leads to limited apical release of virions, consistent with reports of monoculture infection. However, viral RNA and proteins are rapidly detected in underlying endothelial cells, which are themselves refractory to apical infection in monocultures. Although endothelial infection is unproductive, it leads to the formation of cell clusters with low CD31 expression, a progressive loss of barrier integrity and a pro-coagulatory microenvironment. Viral RNA persists in individual cells generating an inflammatory response, which is transient in epithelial cells but persistent in endothelial cells and typified by IL-6 secretion even in the absence of immune cells. Inhibition of IL-6 signalling with tocilizumab reduces but does not prevent loss of barrier integrity. SARS-CoV-2-mediated endothelial cell damage thus occurs independently of cytokine storm.
American journal of respiratory and critical care medicine
Kato, T;Asakura, T;Edwards, CE;Dang, H;Mikami, Y;Okuda, K;Chen, G;Sun, L;Gilmore, RC;Hawkins, P;De la Cruz, G;Cooley, MR;Bailey, AB;Hewitt, SM;Chertow, DS;Borczuk, AC;Salvatore, S;Martinez, FJ;Thorne, LB;Askin, FB;Ehre, C;Randell, SH;O'Neal, WK;Baric, RS;Boucher, RC;NIH COVID-19 Autopsy Consortium, ;
PMID: 35816430 | DOI: 10.1164/rccm.202111-2606OC
The incidence and sites of mucus accumulation, and molecular regulation of mucin gene expression, in COVID-19 lung disease have not been reported.Characterize incidence of mucus accumulation and the mechanisms mediating mucin hypersecretion in COVID-19 lung disease.Airway mucus and mucins were evaluated in COVID-19 autopsy lungs by AB-PAS and immunohistochemical staining, RNA in situ hybridization, and spatial transcriptional profiling. SARS-CoV-2-infected human bronchial epithelial (HBE) cultures were utilized to investigate mechanisms of SARS-CoV-2-induced mucin expression and synthesis and test candidate countermeasures.MUC5B and variably MUC5AC RNA levels were increased throughout all airway regions of COVID-19 autopsy lungs, notably in the sub-acute/chronic disease phase following SARS-CoV-2 clearance. In the distal lung, MUC5B-dominated mucus plugging was observed in 90% of COVID-19 subjects in both morphologically identified bronchioles and microcysts, and MUC5B accumulated in damaged alveolar spaces. SARS-CoV-2-infected HBE cultures exhibited peak titers 3 days post inoculation, whereas induction of MUC5B/MUC5AC peaked 7-14 days post inoculation. SARS-CoV-2 infection of HBE cultures induced expression of EGFR ligands and inflammatory cytokines (e.g., IL-1α/β) associated with mucin gene regulation. Inhibiting EGFR/IL-1R pathways, or dexamethasone administration, reduced SARS-CoV-2-induced mucin expression.SARS-CoV-2 infection is associated with a high prevalence of distal airspace mucus accumulation and increased MUC5B expression in COVID-19 autopsy lungs. HBE culture studies identified roles for EGFR and IL-1R signaling in mucin gene regulation post SARS-CoV-2 infection. These data suggest that time-sensitive mucolytic agents, specific pathway inhibitors, or corticosteroid administration may be therapeutic for COVID-19 lung disease. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Annals of Diagnostic Pathology
Mezache, L;Nuovo, G;Suster, D;Tili, E;Awad, H;Radwański, P;Veeraraghavan, R;
| DOI: 10.1016/j.anndiagpath.2022.151983
Cardiac manifestations are common in severe COVID-19. This study compared the histologic, viral, and molecular findings in cardiac tissue in fatal COVID-19 (n = 11) and controls (n = 11). In situ hybridization (SARS-CoV2 RNA) and immunohistochemistry for viral proteins and the host response were quantified for the samples and compared with qRTPCR and Western blot data. Control hearts showed a high resident population of macrophages that had variable ACE2 expression. Cardiac ACE2 expression was 10× greater in the heart tissues of cases and controls with obesity or type II diabetes. Multifocal endothelial cell swelling and degeneration, perivascular edema plus microvascular thrombi were unique to the cases. SARS-CoV2 RNA and nucleocapsid protein were rarely detected in situ in any COVID-19 heart. However, in each case abundant SARS-CoV-2 spike protein was evident. Co-expression experiments showed that the spike protein localized mostly to the ACE2+ interstitial macrophages/pericytes that were activated as evidenced by increased IL6 and TNFα expression. Western blots confirmed the presence of the viral spike protein, but not the nucleocapsid protein, in the cardiac homogenates. The intercalated disc proteins connexin 43, the primary cardiac gap junction protein, and NaV1.5, the predominant cardiac sodium channel, each showed marked lateral migration in the myocytes in the cases, which would increase the risk of reentrant arrhythmias. It is concluded that the viral spike protein, endocytosed by macrophages/pericytes, can induce a myocarditis with the possibility of conduction dysfunction due to abnormal localization of key intercalated disc proteins.
Annals of diagnostic pathology
Nuovo, GJ;Suster, D;Awad, H;Michaille, JJ;Tili, E;
PMID: 34968863 | DOI: 10.1016/j.anndiagpath.2021.151881
Hepatic disease is common in severe COVID-19. This study compared the histologic/molecular findings in the liver in fatal COVID-19 (n = 9) and age-matched normal controls (n = 9); three of the fatal COVID-19 livers had pre-existing alcohol use disorder (AUD). Controls showed a high resident population of sinusoidal macrophages that had variable ACE2 expression. Histologic findings in the cases included periportal/lobular inflammation. SARS-CoV2 RNA and nucleocapsid protein were detected in situ in 2/9 COVID-19 livers in low amounts. In 9/9 cases, there was ample in situ SARS-CoV-2 spike protein that co-localized with viral matrix and envelope proteins. The number of cells positive for spike/100× field was significantly greater in the AUD/COVID-19 cases (mean 5.9) versus the non-AUD/COVID-19 cases (mean 0.4, p < 0.001) which was corroborated by Western blots. ACE2+ cells were 10× greater in AUD/COVID-19 livers versus the other COVID-19/control liver samples (p < 0.001). Co-expression experiments showed that the spike protein localized to the ACE2 positive macrophages and, in the AUD cases, hepatic stellate cells that were activated as evidenced by IL6 and TNFα expression. Injection of the S1, but not S2, subunit of spike in mice induced hepatic lobular inflammation in activated macrophages. It is concluded that endocytosed viral spike protein can induce hepatitis in fatal COVID-19. This spike induced hepatitis is more robust in the livers with pre-existing AUD which may relate to why patients with alcohol abuse are at higher risk of severe liver disease with SARS-CoV2 infection.