European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology
Begni, V;Pisano, I;Marizzoni, M;Marchisella, F;Creutzberg, KC;De Rosa, F;Cattaneo, A;Gruca, P;Litwa, E;Papp, M;Riva, MA;
PMID: 35830759 | DOI: 10.1016/j.euroneuro.2022.06.005
Chronic stress represents a major contributor for the development of mental illness. This study aimed to investigate how animals exposed to chronic mild stress (CMS) responded to an acute stress (AS), as a vulnerability's challenge, and to establish the potential effects of the antipsychotic drug lurasidone on such mechanisms. Adult male Wistar rats were exposed or not (controls) to a CMS paradigm for 7 weeks. Starting from the end of week 2, animals were randomized to receive vehicle or lurasidone for 5 weeks. Sucrose intake was used to measure anhedonia. At the end, half of the animals were exposed to an acute stress before sacrifice. Exposure to CMS produced a significant reduction in sucrose consumption, whereas lurasidone progressively normalized such alteration. We found that exposure to AS produced an upregulation of Brain derived neurotrophic factor (Bdnf) in the prefrontal cortex of controls animals. This response was impaired in CMS rats and restored by lurasidone treatment. While in control animals, AS-induced increase of Bdnf mRNA levels was specific for Parvalbumin cells, CMS rats treated with lurasidone show a significant upregulation of Bdnf in pyramidal cells. Furthermore, when investigating the activation of different brain regions, CMS rats showed an impairment in the global response to the acute stressor, that was largely restored by lurasidone treatment. Our results suggest that lurasidone treatment in CMS rats may regulate specific circuits and mechanisms, which will ultimately contribute to boost resilience under stressful challenges.
Yap Promotes Noncanonical Wnt Signals from Cardiomyocytes for Heart Regeneration
Liu, S;Tang, L;Zhao, X;Nguyen, B;Heallen, TR;Li, M;Wang, J;Wang, J;Martin, JF;
PMID: 34424032 | DOI: 10.1161/CIRCRESAHA.121.318966
Rationale: During neonatal heart regeneration, the fibrotic response, which is required to prevent cardiac rupture, resolves via poorly understood mechanisms. Deletion of the Hippo pathway gene Sav in adult CMs increases Yap activity and promotes cardiac regeneration, partly by inducing fibrosis resolution. Deletion of Yap in neonatal cardiomyocytes (CMs) leads to increased fibrosis and loss of neonatal heart regeneration, suggesting that Yap inhibits fibrosis by regulating intercellular signaling from CMs to cardiac fibroblasts (CFs). Objective: We investigated the role of Wntless (Wls), which is a direct target gene of Yap, in communication between CMs and CFs during neonatal heart regeneration. Methods and Results: We generated two mouse models to delete Wls specifically in CMs (Myh6-Cas9 combined with AAV9-Wls-gRNAs, and Myh6cre-ERT2/+; Wlsflox/flox mouse). Reanalysis of single-cell RNA-sequencing data revealed that Wnt ligands are expressed in CMs, whereas Wnt receptors are expressed in CFs, suggesting that Wnt signaling is directional from CMs to CFs during neonatal heart regeneration. Wls deletion in neonatal hearts disrupted Wnt signaling, showing as reduced noncanonical Wnt signaling in non-CMs. Four weeks after neonatal heart infarction, heart function was measured by echocardiography. Wls deletion in neonatal hearts after myocardial infarction impairs neonatal heart regeneration, marked by decreased contractile function and increased fibrosis. Wls mutant hearts display CF activation, characterized by increased extracellular matrix secretion, inflammation, and CF proliferation. Conclusions: These data indicate that during neonatal heart regeneration, intercellular signaling from CMs to CFs occurs via noncanonical Wnt signaling to rebuild cardiac architecture after myocardial infarction.
European Neuropsychopharmacology
Pisano, I;Begni, V;Creutzberg, K;Marchisella, F;De Rosa, F;Papp, M;Riva, M;
| DOI: 10.1016/j.euroneuro.2021.10.522
Background: Stress represents a major contributor for the development of mental illness. Accordingly, exposure of adult rats to chronic stress represents a valuable experimental tool to investigate the ability of pharmacological intervention to counteract the adverse effects produced by stress exposure. The aim of this study was to perform a time course analyses of the changes produced by the antipsychotic drug lurasidone in the Chronic Mild Stress (CMS) model, in order to identify early mechanisms that may contribute to its therapeutic activity. Methods: Adult male Wistar rats were left undisturbed or exposed to the CMS paradigm, a well-established model of depression. After two weeks of stress, both controls and CMS rats were randomly divided in two subgroups that received vehicle or lurasidone for five weeks. Sucrose consumption was used to measure anhedonia, a core symptom of depression. Animals were sacrificed after two, three or five weeks of treatment in order to investigate dynamic changes during lurasidone administration. For the sucrose consumption we performed three-way ANOVA and two-way ANOVA with Tukey's posthoc. For the molecular analysis we performed 2-way ANOVA, with Tukey's posthoc for qRT-PCR data and Sidak's posthoc for RNAscope data. Results: CMS rats show a significant reduction in sucrose consumption, (-46% after two weeks, p
Annals of the rheumatic diseases
Rousselle, A;Sonnemann, J;Amann, K;Mildner, A;Lodka, D;Kling, L;Bieringer, M;Schneider, U;Leutz, A;Enghard, P;Kettritz, R;Schreiber, A;
PMID: 35418479 | DOI: 10.1136/annrheumdis-2021-221984
Myeloid cell activation by antineutrophil cytoplasmic antibody (ANCA) is pivotal for necrotising vasculitis, including necrotising crescentic glomerulonephritis (NCGN). In contrast to neutrophils, the contribution of classical monocyte (CM) and non-classical monocyte (NCM) remains poorly defined. We tested the hypothesis that CMs contribute to antineutrophil cytoplasmic antibody-associated vasculitis (AAV) and that colony-stimulating factor-2 (CSF2, granulocyte-macrophage colony-stimulating factor (GM-CSF)) is an important monocyte-directed disease modifier.Myeloperoxidase (MPO)-immunised MPO-/- mice were transplanted with haematopoietic cells from wild-type (WT) mice, C-C chemokine receptor 2 (CCR2)-/- mice to abrogate CM, or transcription factor CCAAT-enhancer-binding protein beta (C/EBPβ)-/- mice to reduce NCM, respectively. Monocytes were stimulated with CSF2, and CSF2 receptor subunit beta (CSF2rb)-deficient mice were used. Urinary monocytes and CSF2 were quantified and kidney Csf2 expression was analysed. CSF2-blocking antibody was used in the nephrotoxic nephritis (NTN) model.Compared with WT mice, CCR2-/- chimeric mice showed reduced circulating CM and were protected from NCGN. C/EBPβ-/- chimeric mice lacked NCM but developed NCGN similar to WT chimeric mice. Kidney and urinary CSF2 were upregulated in AAV mice. CSF2 increased the ability of ANCA-stimulated monocytes to generate interleukin-1β and to promote TH17 effector cell polarisation. CSF2rb-/- chimeric mice harboured reduced numbers of kidney TH17 cells and were protected from NCGN. CSF2 neutralisation reduced renal damage in the NTN model. Finally, patients with active AAV displayed increased urinary CM numbers, CSF2 levels and expression of GM-CSF in infiltrating renal cells.CMs but not NCMs are important for inducing kidney damage in AAV. CSF2 is a crucial pathological factor by modulating monocyte proinflammatory functions and thereby TH17 cell polarisation.