Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for YAP

ACD can configure probes for the various manual and automated assays for YAP for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for YAP (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (6)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • Lgr5 (6) Apply Lgr5 filter
  • Axin2 (5) Apply Axin2 filter
  • (-) Remove TBD filter TBD (5)
  • OLFM4 (3) Apply OLFM4 filter
  • ZEB1 (2) Apply ZEB1 filter
  • Taz (2) Apply Taz filter
  • Yap1 (2) Apply Yap1 filter
  • Klf6 (2) Apply Klf6 filter
  • Yap (2) Apply Yap filter
  • TGFB1 (1) Apply TGFB1 filter
  • Ostn (1) Apply Ostn filter
  • Gad1 (1) Apply Gad1 filter
  • CCND1 (1) Apply CCND1 filter
  • Rspo1 (1) Apply Rspo1 filter
  • DICER1 (1) Apply DICER1 filter
  • CHGA (1) Apply CHGA filter
  • CXCL10 (1) Apply CXCL10 filter
  • Ptch1 (1) Apply Ptch1 filter
  • MMP3 (1) Apply MMP3 filter
  • GLI1 (1) Apply GLI1 filter
  • PTK7 (1) Apply PTK7 filter
  • HES1 (1) Apply HES1 filter
  • MYC (1) Apply MYC filter
  • Spp1 (1) Apply Spp1 filter
  • PROCR (1) Apply PROCR filter
  • SNAI1 (1) Apply SNAI1 filter
  • SNAI2 (1) Apply SNAI2 filter
  • Rorb (1) Apply Rorb filter
  • BCAR4 (1) Apply BCAR4 filter
  • CXCL12 (1) Apply CXCL12 filter
  • Sftpc (1) Apply Sftpc filter
  • TEAD2 (1) Apply TEAD2 filter
  • TEAD4 (1) Apply TEAD4 filter
  • Bhlha15 (1) Apply Bhlha15 filter
  • Rest (1) Apply Rest filter
  • Dpp4 (1) Apply Dpp4 filter
  • Satb2 (1) Apply Satb2 filter
  • Scgb1a1 (1) Apply Scgb1a1 filter
  • Map2 (1) Apply Map2 filter
  • Nuak1 (1) Apply Nuak1 filter
  • Lats1 (1) Apply Lats1 filter
  • Lats2 (1) Apply Lats2 filter
  • TRPS1 (1) Apply TRPS1 filter
  • tdTomato (1) Apply tdTomato filter
  • (-) Remove Cyr61 filter Cyr61 (1)
  • MUC5B (1) Apply MUC5B filter
  • VGluT1 (1) Apply VGluT1 filter
  • IFN-γ (1) Apply IFN-γ filter
  • Cre (1) Apply Cre filter
  • Tead1 (1) Apply Tead1 filter

Product

  • RNAscope Multiplex Fluorescent Assay (1) Apply RNAscope Multiplex Fluorescent Assay filter

Research area

  • Stem Cells (1) Apply Stem Cells filter

Category

  • Publications (6) Apply Publications filter
Yap Promotes Noncanonical Wnt Signals from Cardiomyocytes for Heart Regeneration

Circulation research

2021 Aug 23

Liu, S;Tang, L;Zhao, X;Nguyen, B;Heallen, TR;Li, M;Wang, J;Wang, J;Martin, JF;
PMID: 34424032 | DOI: 10.1161/CIRCRESAHA.121.318966

Rationale: During neonatal heart regeneration, the fibrotic response, which is required to prevent cardiac rupture, resolves via poorly understood mechanisms. Deletion of the Hippo pathway gene Sav in adult CMs increases Yap activity and promotes cardiac regeneration, partly by inducing fibrosis resolution. Deletion of Yap in neonatal cardiomyocytes (CMs) leads to increased fibrosis and loss of neonatal heart regeneration, suggesting that Yap inhibits fibrosis by regulating intercellular signaling from CMs to cardiac fibroblasts (CFs). Objective: We investigated the role of Wntless (Wls), which is a direct target gene of Yap, in communication between CMs and CFs during neonatal heart regeneration. Methods and Results: We generated two mouse models to delete Wls specifically in CMs (Myh6-Cas9 combined with AAV9-Wls-gRNAs, and Myh6cre-ERT2/+; Wlsflox/flox mouse). Reanalysis of single-cell RNA-sequencing data revealed that Wnt ligands are expressed in CMs, whereas Wnt receptors are expressed in CFs, suggesting that Wnt signaling is directional from CMs to CFs during neonatal heart regeneration. Wls deletion in neonatal hearts disrupted Wnt signaling, showing as reduced noncanonical Wnt signaling in non-CMs. Four weeks after neonatal heart infarction, heart function was measured by echocardiography. Wls deletion in neonatal hearts after myocardial infarction impairs neonatal heart regeneration, marked by decreased contractile function and increased fibrosis. Wls mutant hearts display CF activation, characterized by increased extracellular matrix secretion, inflammation, and CF proliferation. Conclusions: These data indicate that during neonatal heart regeneration, intercellular signaling from CMs to CFs occurs via noncanonical Wnt signaling to rebuild cardiac architecture after myocardial infarction.
Single-Cell Analysis of the Liver Epithelium Reveals Dynamic Heterogeneity and an Essential Role for YAP in Homeostasis and Regeneration.

Cell Stem Cell.

2019 May 09

Pepe-Mooney BJ, Dill MT, Alemany A, Ordovas-Montanes J, Matsushita Y, Rao A, Sen A, Miyazaki M, Anakk S, Dawson PA, Ono N, Shalek AK, van Oudenaarden A, Camargo FD.
PMID: 31080134 | DOI: 10.1016/j.stem.2019.04.004

The liver can substantially regenerate after injury, with both main epithelial cell types, hepatocytes and biliary epithelial cells (BECs), playing important roles in parenchymal regeneration. Beyond metabolic functions, BECs exhibit substantial plasticity and in some contexts can drive hepatic repopulation. Here, we performed single-cell RNA sequencing to examine BEC and hepatocyte heterogeneity during homeostasisand after injury. Instead of evidence for a transcriptionally defined progenitor-like BEC cell, we found significant homeostatic BEC heterogeneity that reflects fluctuating activation of a YAP-dependent program. This transcriptional signature defines a dynamic cellular state during homeostasis and is highly responsive to injury. YAP signaling is induced by physiological bile acids (BAs), required for BEC survival in response to BA exposure, and is necessary for hepatocyte reprogramming into biliary progenitors upon injury. Together, these findings uncover molecular heterogeneity within the ductal epithelium and reveal YAP as a protective rheostat and regenerative regulator in the mammalian liver.

Adaptive differentiation promotes intestinal villus recovery

Developmental cell

2022 Jan 24

Ohara, TE;Colonna, M;Stappenbeck, TS;
PMID: 35016013 | DOI: 10.1016/j.devcel.2021.12.012

Loss of differentiated cells to tissue damage is a hallmark of many diseases. In slow-turnover tissues, long-lived differentiated cells can re-enter the cell cycle or transdifferentiate to another cell type to promote repair. Here, we show that in a high-turnover tissue, severe damage to the differentiated compartment induces progenitors to transiently acquire a unique transcriptional and morphological postmitotic state. We highlight this in an acute villus injury model in the mouse intestine, where we identified a population of progenitor-derived cells that covered injured villi. These atrophy-induced villus epithelial cells (aVECs) were enriched for fetal markers but were differentiated and lineage committed. We further established a role for aVECs in maintaining barrier integrity through the activation of yes-associated protein (YAP). Notably, loss of YAP activity led to impaired villus regeneration. Thus, we define a key repair mechanism involving the activation of a fetal-like program during injury-induced differentiation, a process we term "adaptive differentiation."
3: Multimodal Molecular Analysis Reveals Divergent Trajectories Of Wound Regeneration Versus Fibrosis

Plastic and Reconstructive Surgery - Global Open

2021 Jul 26

desJardins-Park, H;Mascharak, S;Januszyk, M;Chen, K;Davitt, M;Demeter, J;Henn, D;Griffin, M;Bonham, C;Mooney, N;Cheng, R;Jackson, P;Wan, D;Gurtner, G;Longaker, M;
| DOI: 10.1097/01.gox.0000769936.79898.fc

RESULTS: Pseudotime analysis (Monocle3) of pooled scRNA-seq data revealed that fibroblasts followed two distinct transcriptional trajectories, one characterized by mechanical activation (_En-1_ lineage-positive, “fibrotic” trajectory) and the other characterized by developmental and regenerative pathways (_En-1_ lineage-negative; Rspo1, Dkk2/3, Trps1). Cross-platform data integration confirmed that fibroblasts in the fibrotic trajectory correlated with myofibroblast proteomic signatures (Col1a1/2, Fn1, etc.) and fibrotic/scar ECM features. In contrast, fibroblasts in the regenerative trajectory negatively correlated with myofibroblast markers and were associated with a “basket-weave” ECM pattern quantitatively indistinguishable from that of unwounded skin. Our integrated dataset suggested an important role for Wnt pathway proteins in ENF-mediated skin regeneration, so we compared POD 14 scars and regenerated wounds by multiplexed _in situ_ hybridization (RNAScope) for _Rspo1_ (Wnt agonist), _Trps1_ (master hair follicle regulator), _Ank1_ (YAP target gene), and _Dpp4_ (EPF marker). Quantification of RNA granules across thousands of cells using a custom image analysis pipeline revealed that ENF-mediated healing (low _Dpp4_) in YAP-inhibited (low _Ank1_) wounds yielded regeneration of functional hair follicles through Wnt-mediated pathway activation (high _Rpos1_, _Trps1_). These data suggest that YAP inhibition unlocks wound regeneration via Wnt-active, _En-1_ lineage-negative fibroblasts.
The ZMYND8-regulated mevalonate pathway endows YAP-high intestinal cancer with metabolic vulnerability

Molecular cell

2021 Apr 22

Pan, Q;Zhong, S;Wang, H;Wang, X;Li, N;Li, Y;Zhang, G;Yuan, H;Lian, Y;Chen, Q;Han, Y;Guo, J;Liu, Q;Qiu, T;Jiang, J;Li, Q;Tan, M;Yin, H;Peng, J;Xiao, Y;Qin, J;
PMID: 33932349 | DOI: 10.1016/j.molcel.2021.04.009

Cholesterol metabolism is tightly associated with colorectal cancer (CRC). Nevertheless, the clinical benefit of statins, the inhibitor of cholesterol biogenesis mevalonate (MVA) pathway, is inconclusive, possibly because of a lack of patient stratification criteria. Here, we describe that YAP-mediated zinc finger MYND-type containing 8 (ZMYND8) expression sensitizes intestinal tumors to the inhibition of the MVA pathway. We show that the oncogenic activity of YAP relies largely on ZMYND8 to enhance intracellular de novo cholesterol biogenesis. Disruption of the ZMYND8-dependent MVA pathway greatly restricts the self-renewal capacity of Lgr5+ intestinal stem cells (ISCs) and intestinal tumorigenesis. Mechanistically, ZMYND8 and SREBP2 drive the enhancer-promoter interaction to facilitate the recruitment of Mediator complex, thus upregulating MVA pathway genes. Together, our results establish that the epigenetic reader ZMYND8 endows YAP-high intestinal cancer with metabolic vulnerability.
IQGAP3, a YAP Target, Is Required for Proper Cell-Cycle Progression and Genome Stability

Molecular cancer research : MCR

2021 Jun 28

Leone, M;Cazorla-Vázquez, S;Ferrazzi, F;Wiederstein, JL;Gründl, M;Weinstock, G;Vergarajauregui, S;Eckstein, M;Krüger, M;Gaubatz, S;Engel, FB;
PMID: 34183451 | DOI: 10.1158/1541-7786.MCR-20-0639

Controlling cell proliferation is critical for organism development, tissue homeostasis, disease, and regeneration. IQGAP3 has been shown to be required for proper cell proliferation and migration, and is associated to a number of cancers. Moreover, its expression is inversely correlated with the overall survival rate in the majority of cancers. Here, we show that IQGAP3 expression is elevated in cervical cancer and that in these cancers IQGAP3 high expression is correlated with an increased lethality. Furthermore, we demonstrate that IQGAP3 is a target of YAP, a regulator of cell cycle gene expression. IQGAP3 knockdown resulted in an increased percentage of HeLa cells in S phase, delayed progression through mitosis, and caused multipolar spindle formation and consequentially aneuploidy. Protein-protein interaction studies revealed that IQGAP3 interacts with MMS19, which is known in Drosophila to permit, by competitive binding to Xpd, Cdk7 to be fully active as a Cdk-activating kinase (CAK). Notably, IQGAP3 knockdown caused decreased MMS19 protein levels and XPD knockdown partially rescued the reduced proliferation rate upon IQGAP3 knockdown. This suggests that IQGAP3 modulates the cell cycle via the MMS19/XPD/CAK axis. Thus, in addition to governing proliferation and migration, IQGAP3 is a critical regulator of mitotic progression and genome stability. IMPLICATIONS: Our data indicate that, while IQGAP3 inhibition might be initially effective in decreasing cancer cell proliferation, this approach harbors the risk to promote aneuploidy and, therefore, the formation of more aggressive cancers.
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?