Kirschner, KM;Foryst-Ludwig, A;Gohlke, S;Li, C;Flores, RE;Kintscher, U;Schupp, M;Schulz, TJ;Scholz, H;
PMID: 34846543 | DOI: 10.1007/s00125-021-05621-1
Despite a similar fat storing function, visceral (intra-abdominal) white adipose tissue (WAT) is detrimental, whereas subcutaneous WAT is considered to protect against metabolic disease. Recent findings indicate that thermogenic genes, expressed in brown adipose tissue (BAT), can be induced primarily in subcutaneous WAT. Here, we investigate the hypothesis that the Wilms tumour gene product (WT1), which is expressed in intra-abdominal WAT but not in subcutaneous WAT and BAT, suppresses a thermogenic program in white fat cells.Heterozygous Wt1 knockout mice and their wild-type littermates were examined in terms of thermogenic and adipocyte-selective gene expression. Glucose tolerance and hepatic lipid accumulation in these mice were assessed under normal chow and high-fat diet conditions. Pre-adipocytes isolated from the stromal vascular fraction of BAT were transduced with Wt1-expressing retrovirus, induced to differentiate and analysed for the expression of thermogenic and adipocyte-selective genes.Expression of the thermogenic genes Cpt1b and Tmem26 was enhanced and transcript levels of Ucp1 were on average more than tenfold higher in epididymal WAT of heterozygous Wt1 knockout mice compared with wild-type mice. Wt1 heterozygosity reduced epididymal WAT mass, improved whole-body glucose tolerance and alleviated severe hepatic steatosis upon diet-induced obesity in mice. Retroviral expression of WT1 in brown pre-adipocytes, which lack endogenous WT1, reduced mRNA levels of Ucp1, Ppargc1a, Cidea, Prdm16 and Cpt1b upon in vitro differentiation by 60-90%. WT1 knockdown in epididymal pre-adipocytes significantly lowered Aldh1a1 and Zfp423 transcripts, two key suppressors of the thermogenic program. Conversely, Aldh1a1 and Zfp423 mRNA levels were increased approximately five- and threefold, respectively, by retroviral expression of WT1 in brown pre-adipocytes.WT1 functions as a white adipocyte determination factor in epididymal WAT by suppressing thermogenic genes. Reducing Wt1 expression in this and other intra-abdominal fat depots may represent a novel treatment strategy in metabolic disease.
FC 017DEEP-LEARNING ENABLED QUANTIFICATION OF SINGLE-CELL SINGLE-MRNA TRANSCRIPTS AND CORRELATIVE SUPER-RESOLVED PODOCYTE FOOT PROCESS MORPHOMETRY IN ROUTINE KIDNEY BIOPSY SPECIMEN
Nephrology Dialysis Transplantation
Siegerist, F;Hay, E;Dang, J;Mahtal, N;Tharaux, P;Zimmermann, U;Ribback, S;Dombrowski, F;Endlich, K;Endlich, N;
| DOI: 10.1093/ndt/gfab138.003
Background and Aims Although high-throughput single-cell transcriptomic analysis, super-resolution light microscopy and deep-learning methods are broadly used, the gold-standard to evaluate kidney biopsies is still the histologic assessment of formalin-fixed and paraffin embedded (FFPE) samples with parallel ultrastructural evaluation. Recently, we and others have shown that super-resolution fluorescence microscopy can be used to study glomerular ultrastructure in human biopsy samples. Additionally, in the last years mRNA in situ hybridization techniques have been improved to increase specificity and sensitivity to enable transcriptomic analysis with single-mRNA resolution (smFISH). Method For smFISH, we used the fluorescent multiplex RNAscope kit with probes targeting ACE2, WT1, PPIB, UBC and POLR2A. To find an on-slide reference gene, the normfinder algorithm was used. The smFISH protocol was combined with a single-step anti-podocin immunofluorescence enabled by VHH nanobodies. Podocytes were labeled by tyramide-signal amplified immunofluorescence using recombinant anti-WT1 antibodies. Slides were imaged using confocal laser scanning, as well as 3D structured illumination microscopy. Deep-learning networks to segment glomeruli and cell nuclei (UNet and StarDist) were trained using the ZeroCostDL4Mic approach. Scripts to automate analysis were developed in the ImageJ1 macro language. Results First, we show robust functionality of threeplex smFISH in archived routine FFPE kidney biopsy samples with single-mRNA resolution. As variations in sample preparation can negatively influence mRNA-abundance, we established PPIB as an ideal on-slide reference gene to account for different RNA-integrities present in biopsy samples. PPIB was chosen for its most stable expression in microarray dataset of various glomerular diseases determined by the Normfinder algorithm as well as its smFISH performance. To segment glomeruli and to label glomerular and tubulointerstitial cell subsets, we established a combination of smFISH and immunofluorescence. As smFISH requires intense tissue digestion to liberate cross-linked RNAs, immunofluorescence protocols had to be adapted: For podocin, a small-sized single-step label approach enabled by small nanobodies and for WT1, tyramide signal amplification was used. For enhanced segmentation performance, we used deep learning: First, a network was customized to recognize DAPI+ cell nuclei and WT1/DAPI+ podocyte nuclei. Second, a UNet was trained to segment glomeruli in podocin-stained tissue sections. Using these segmentation masks, we could annotate PPIB-normalized single mRNA transcripts to individual cells. We established an ImageJ script to automatize transcript quantification. As a proof-of-principle, we demonstrate inverse expression of WT1 and ACE2 in glomerular vs. tubulointerstitial single cells. Furthermore, in the podocyte subset, WT1 highly clustered whereas no significant ACE2 expression was found under baseline conditions. Additionally, when imaged with super-resolution microscopy, podocyte filtration slit morphology could be visualized The optical resolution was around 125 nm and therefore small enough to resolve individual foot processes. The filtration slit density as a podocyte-integrity marker did not differ significantly from undigested tissue sections proving the suitability for correlative podocyte foot process morphometry with single-podocyte transcript analysis. Conclusion Here we present a modular toolbox which combines algorithms for multiplexed, normalized single-cell gene expression with single mRNA resolution in cellular subsets (glomerular, tubulointerstitial and podocytes). Additionally, this approach enables correlation with podocyte filtration slit ultrastructure and gross glomerular morphometry.
Kim JH, Xie J, Hwang KH, Wu YL, Oliver N, Eom M, Park KS, Barrezueta N, Kong ID, Fracasso RP, Huang CL, Cha SK.
PMID: 27151926 | DOI: 10.1681/ASN.2015080888
Klotho is a type-1 membrane protein predominantly produced in the kidney, the extracellular domain of which is secreted into the systemic circulation. Membranous and secreted Klotho protect organs, including the kidney, but whether and how Klotho directly protects the glomerular filter is unknown. Here, we report that secreted Klotho suppressed transient receptor potential channel 6 (TRPC6)-mediated Ca2+influx in cultured mouse podocytes by inhibiting phosphoinositide 3-kinase-dependent exocytosis of the channel. Furthermore, soluble Klotho reduced ATP-stimulated actin cytoskeletal remodeling and transepithelial albumin leakage in these cells. Overexpression of TRPC6 by gene delivery in mice induced albuminuria, and exogenous administration of Klotho ameliorated the albuminuria. Notably, immunofluorescence and in situ hybridization revealed Klotho expression in podocytes of mouse and human kidney. Heterozygous Klotho-deficient CKD mice had aggravated albuminuria compared with that in wild-type CKD mice with a similar degree of hypertension and reduced clearance function. Finally, disrupting the integrity of glomerular filter by saline infusion-mediated extracellular fluid volume expansion increased urinary Klotho excretion. These results reveal a potential novel function of Klotho in protecting the glomerular filter, and may offer a new therapeutic strategy for treatment of proteinuria.
Maynard KR, Kardian A, Hill JL, Mai Y, Barry B, Hallock HL, Jaffe AE, Martinowich K
PMID: 31941661 | DOI: 10.1523/ENEURO.0310-19.2019
Brain-derived neurotrophic factor (BDNF) signals through its cognate receptor tropomyosin receptor kinase B (TrkB) to promote the function of several classes of inhibitory interneurons. We previously reported that loss of BDNF-TrkB signaling in cortistatin (Cort)-expressing interneurons leads to behavioral hyperactivity and spontaneous seizures in mice. We performed bulk RNA sequencing (RNA-seq) from the cortex of mice with disruption of BDNF-TrkB signaling in cortistatin interneurons, and identified differential expression of genes important for excitatory neuron function. Using translating ribosome affinity purification and RNA-seq, we define a molecular profile for Cort-expressing inhibitory neurons and subsequently compare the translatome of normal and TrkB-depleted Cort neurons, revealing alterations in calcium signaling and axon development. Several of the genes enriched in Cort neurons and differentially expressed in TrkB-depleted neurons are also implicated in autism and epilepsy. Our findings highlight TrkB-dependent molecular pathways as critical for the maturation of inhibitory interneurons and support the hypothesis that loss of BDNF signaling in Cort interneurons leads to altered excitatory/inhibitory balance
Patzek, S;Liu, Z;de la O, S;Chang, S;Byrnes, L;Zhang, X;Ornitz, D;Sneddon, J;
| DOI: 10.1016/j.isci.2023.106500
Pancreatic development requires spatially and temporally controlled expression of growth factors derived from mesenchyme. Here, we report that in mice the secreted factor Fgf9 is expressed principally by mesenchyme and then mesothelium during early development, then subsequently by both mesothelium and rare epithelial cells by E12.5 and onwards. Global knockout of the Fgf9 gene resulted in the reduction of pancreas and stomach size, as well as complete asplenia. The number of early Pdx1+ pancreatic progenitors was reduced at E10.5, as was proliferation of mesenchyme at E11.5. Although loss of Fgf9 did not interfere with differentiation of later epithelial lineages, single-cell RNA-Sequencing identified transcriptional programs perturbed upon loss of Fgf9 during pancreatic development, including loss of the transcription factor Barx1. Lastly, we identified conserved expression patterns of FGF9 and receptors in human fetal pancreas, suggesting that FGF9 expressed by pancreatic mesenchyme may similarly affect the development of the human pancreas.
Silva, AC;Matthys, OB;Joy, DA;Kauss, MA;Natarajan, V;Lai, MH;Turaga, D;Blair, AP;Alexanian, M;Bruneau, BG;McDevitt, TC;
PMID: 34861147 | DOI: 10.1016/j.stem.2021.11.007
During embryogenesis, paracrine signaling between tissues in close proximity contributes to the determination of their respective cell fate(s) and development into functional organs. Organoids are in vitro models that mimic organ formation and cellular heterogeneity, but lack the paracrine input of surrounding tissues. Here, we describe a human multilineage iPSC-derived organoid that recapitulates cooperative cardiac and gut development and maturation, with extensive cellular and structural complexity in both tissues. We demonstrate that the presence of endoderm tissue (gut/intestine) in the organoids contributed to the development of cardiac tissue features characteristic of stages after heart tube formation, including cardiomyocyte expansion, compartmentalization, enrichment of atrial/nodal cells, myocardial compaction, and fetal-like functional maturation. Overall, this study demonstrates the ability to generate and mature cooperative tissues originating from different germ lineages within a single organoid model, an advance that will further the examination of multi-tissue interactions during development, physiological maturation, and disease.