Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for WNT5A

ACD can configure probes for the various manual and automated assays for WNT5A for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for WNT5A (213)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (37)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • Wnt5a (31) Apply Wnt5a filter
  • Axin2 (13) Apply Axin2 filter
  • Wnt4 (11) Apply Wnt4 filter
  • Wnt7a (10) Apply Wnt7a filter
  • Wnt2b (10) Apply Wnt2b filter
  • Wnt6 (9) Apply Wnt6 filter
  • Wnt7b (9) Apply Wnt7b filter
  • Wnt3a (9) Apply Wnt3a filter
  • WNT2 (9) Apply WNT2 filter
  • Wnt3 (9) Apply Wnt3 filter
  • Wnt10b (8) Apply Wnt10b filter
  • Wnt1 (8) Apply Wnt1 filter
  • Wnt11 (8) Apply Wnt11 filter
  • Wnt5b (8) Apply Wnt5b filter
  • Wnt10a (7) Apply Wnt10a filter
  • Wnt16 (7) Apply Wnt16 filter
  • Wnt8a (7) Apply Wnt8a filter
  • Wnt8b (7) Apply Wnt8b filter
  • Wnt9a (7) Apply Wnt9a filter
  • Wnt9b (7) Apply Wnt9b filter
  • Rspo3 (5) Apply Rspo3 filter
  • Rspo1 (4) Apply Rspo1 filter
  • TBD (4) Apply TBD filter
  • Dkk3 (3) Apply Dkk3 filter
  • Rspo2 (3) Apply Rspo2 filter
  • Lgr5 (3) Apply Lgr5 filter
  • Dkk4 (3) Apply Dkk4 filter
  • Wls (3) Apply Wls filter
  • PDGFRA (3) Apply PDGFRA filter
  • RNF43 (3) Apply RNF43 filter
  • Wif1 (3) Apply Wif1 filter
  • Rspo4 (2) Apply Rspo4 filter
  • Dkk1 (2) Apply Dkk1 filter
  • GLI1 (2) Apply GLI1 filter
  • Dkk2 (2) Apply Dkk2 filter
  • Fzd7 (2) Apply Fzd7 filter
  • Sfrp1 (2) Apply Sfrp1 filter
  • Sfrp4 (2) Apply Sfrp4 filter
  • Bmp2 (2) Apply Bmp2 filter
  • Foxj1 (2) Apply Foxj1 filter
  • Lgr4 (2) Apply Lgr4 filter
  • Sfrp2 (2) Apply Sfrp2 filter
  • Msx1 (2) Apply Msx1 filter
  • MEIS2 (1) Apply MEIS2 filter
  • Bmp5 (1) Apply Bmp5 filter
  • CDKN3 (1) Apply CDKN3 filter
  • Krt20 (1) Apply Krt20 filter
  • KRT14 (1) Apply KRT14 filter
  • CTGF (1) Apply CTGF filter
  • DCN (1) Apply DCN filter

Product

  • RNAscope 2.5 HD Red assay (8) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Multiplex Fluorescent Assay (8) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.0 Assay (4) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Brown Assay (4) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope (2) Apply RNAscope filter
  • RNAscope Fluorescent Multiplex Assay (1) Apply RNAscope Fluorescent Multiplex Assay filter

Research area

  • Development (7) Apply Development filter
  • Stem Cells (7) Apply Stem Cells filter
  • Cancer (5) Apply Cancer filter
  • Developmental (5) Apply Developmental filter
  • Neuroscience (4) Apply Neuroscience filter
  • Inflammation (3) Apply Inflammation filter
  • Other (3) Apply Other filter
  • Bone (1) Apply Bone filter
  • Colitis (1) Apply Colitis filter
  • Covid (1) Apply Covid filter
  • Endocrine (1) Apply Endocrine filter
  • Evolution (1) Apply Evolution filter
  • Lung (1) Apply Lung filter
  • Other: Lung (1) Apply Other: Lung filter
  • Reproduction (1) Apply Reproduction filter
  • Traumatic brain injury (1) Apply Traumatic brain injury filter

Category

  • Publications (37) Apply Publications filter
MEIS-WNT5A axis regulates development of fourth ventricle choroid plexus

Development (Cambridge, England)

2021 May 15

Kaiser, K;Jang, A;Kompanikova, P;Lun, MP;Prochazka, J;Machon, O;Dani, N;Prochazkova, M;Laurent, B;Gyllborg, D;van Amerongen, R;Fame, RM;Gupta, S;Wu, F;Barker, RA;Bukova, I;Sedlacek, R;Kozmik, Z;Arenas, E;Lehtinen, MK;Bryja, V;
PMID: 34032267 | DOI: 10.1242/dev.192054

The choroid plexus (ChP) produces cerebrospinal fluid and forms an essential brain barrier. ChP tissues form in each brain ventricle, each one adopting a distinct shape, but remarkably little is known about the mechanisms underlying ChP development. Here, we show that epithelial WNT5A is crucial for determining fourth ventricle (4V) ChP morphogenesis and size in mouse. Systemic Wnt5a knockout, or forced Wnt5a overexpression beginning at embryonic day 10.5, profoundly reduced ChP size and development. However, Wnt5a expression was enriched in Foxj1-positive epithelial cells of 4V ChP plexus, and its conditional deletion in these cells affected the branched, villous morphology of the 4V ChP. We found that WNT5A was enriched in epithelial cells localized to the distal tips of 4V ChP villi, where WNT5A acted locally to activate non-canonical WNT signaling via ROR1 and ROR2 receptors. During 4V ChP development, MEIS1 bound to the proximal Wnt5a promoter, and gain- and loss-of-function approaches demonstrated that MEIS1 regulated Wnt5a expression. Collectively, our findings demonstrate a dual function of WNT5A in ChP development and identify MEIS transcription factors as upstream regulators of Wnt5a in the 4V ChP epithelium.
FoxL1+ mesenchymal cells are a critical source of Wnt5a for midgut elongation during mouse embryonic intestinal development

Cells and Development

2021 Mar 01

Kondo, A;Kaestner, K;
| DOI: 10.1016/j.cdev.2021.203662

Wnt5a is a non-canonical Wnt ligand that is essential for normal embryonic development in mammals. The role of Wnt5a in early intestinal development has been examined in gene ablation models, where _Wnt5a__−/−_ mice exhibit strikingly shortened intestines. However, the exact cellular source of Wnt5a has remained elusive, until a recent study found that FoxL1-expressing mesenchymal cells (FoxL1+ cells), which are localized directly beneath the intestinal epithelium, express Wnt5a. To determine whether FoxL1+ cells are a required source of Wnt5a during intestinal development, we derived _FoxL1-Cre; Wnt5a__f/f_ mice, which is the first mouse model to ablate Wnt5a in a cell type-specific manner in the intestine _in vivo_. Our results show that Wnt5a deletion in FoxL1+ cells during fetal life causes a shortened gut phenotype in neonatal mice, and that our model is sufficient to increase rate of apoptosis in the elongating epithelium, thus explaining the shortened gut phenotype. However, in contrast to previous studies using Wnt5a null mice, we did not observe dysregulation of epithelial structure or apical-basal protein localization. Altogether, our findings establish a developmental role for FoxL1+ mesenchymal cells in controlling non-canonical Wnt signaling during midgut elongation.
FOXF1 Regulates Alveolar Epithelial Morphogenesis Through Transcriptional Activation of Mesenchymal WNT5A

American journal of respiratory cell and molecular biology

2022 Dec 21

Reza, AA;Kohram, F;Reza, HA;Kalin, TR;Kannan, PS;Zacharias, WJ;Kalinichenko, VV;
PMID: 36542853 | DOI: 10.1165/rcmb.2022-0191OC

Mutations in the FOXF1 gene, encoding the mesenchymal Forkhead Box (FOX) transcription factor, are linked to Alveolar Capillary Dysplasia with Misalignment of Pulmonary Veins (ACDMPV), a severe congenital disorder associated with the loss of alveolar capillaries and lung hypoplasia. While proangiogenic functions of FOXF1 have been extensively studied, the role of FOXF1 in mesenchymal-epithelial signaling during lung development remains uncharacterized. Herein, we utilized murine lung organoids to demonstrate that the S52F FOXF1 mutation (found in ACDMPV patients) stimulates canonical WNT/β-catenin signaling in type 2 alveolar epithelial cells (AEC2s), leading to increased proliferation of AEC2s and decreased differentiation of AEC2s into AEC1s. Alveolar organoids containing Foxf1WT/S52F lung fibroblasts and wild-type epithelial cells grew faster on Matrigel and exhibited AEC2 hyperplasia. AEC2 hyperplasia and loss of AEC1s were found in the lungs of Foxf1WT/S52F embryos, a mouse model of ACDMPV. Activation of canonical WNT/β-catenin signaling in AEC2s of lung organoids and Foxf1WT/S52F mice was associated with decreased expression of non-canonical WNT5A ligand in lung fibroblasts. Mechanistically, FOXF1 directly activates the Wnt5a gene transcription through an evolutionarily conserved +6320/+6326 region located in the first intron of the Wnt5a gene. Site-directed mutagenesis of the +6320/+6326 region prevented the transcriptional activation of the Wnt5a enhancer by FOXF1. Treatment with exogenous WNT5A ligand inhibited the effects of the S52F FOXF1 mutation on canonical WNT/β-catenin signaling in alveolar organoids, preventing aberrant AEC2 cell expansion and restoring differentiation of AEC1s. Activation of either FOXF1 or WNT5A may provide an attractive strategy to improve lung function in ACDMPV patients.
Convergent deployment of ancestral functions during the evolution of mammalian flight membranes

Science advances

2023 Mar 24

Feigin, CY;Moreno, JA;Ramos, R;Mereby, SA;Alivisatos, A;Wang, W;van Amerongen, R;Camacho, J;Rasweiler, JJ;Behringer, RR;Ostrow, B;Plikus, MV;Mallarino, R;
PMID: 36961889 | DOI: 10.1126/sciadv.ade7511

Lateral flight membranes, or patagia, have evolved repeatedly in diverse mammalian lineages. While little is known about patagium development, its recurrent evolution may suggest a shared molecular basis. By combining transcriptomics, developmental experiments, and mouse transgenics, we demonstrate that lateral Wnt5a expression in the marsupial sugar glider (Petaurus breviceps) promotes the differentiation of its patagium primordium. We further show that this function of Wnt5a reprises ancestral roles in skin morphogenesis predating mammalian flight and has been convergently used during patagium evolution in eutherian bats. Moreover, we find that many genes involved in limb development have been redeployed during patagium outgrowth in both the sugar glider and bat. Together, our findings reveal that deeply conserved genetic toolkits contribute to the evolutionary transition to flight in mammals.
WNT5A is transported via lipoprotein particles in the cerebrospinal fluid to regulate hindbrain morphogenesis.

Nat Commun.

2019 Apr 02

Kaiser K, Gyllborg D, Procházka J, Salašová A, Kompaníková P, Molina FL, Laguna-Goya R, Radaszkiewicz T, Harnoš J, Procházková M, Potěšil D, Barker RA, Casado AG, Zdráhal Z, Sedláček R, Arenas E, Villaescusa JC, Bryja V.
PMID: 30940800 | DOI: 10.1038/s41467-019-09298-4

WNTs are lipid-modified proteins that control multiple functions in development and disease via short- and long-range signaling. However, it is unclear how these hydrophobic molecules spread over long distances in the mammalian brain. Here we show that WNT5A is produced by the choroid plexus (ChP) of the developing hindbrain, but not the telencephalon, in both mouse and human. Since the ChP produces and secretes the cerebrospinal fluid (CSF), we examine the presence of WNT5A in the CSF and find that it is associated with lipoprotein particles rather than exosomes. Moreover, since the CSF flows along the apical surface of hindbrain progenitors not expressing Wnt5a, we examined whether deletion of Wnt5a in the ChP controls their function and find that cerebellar morphogenesis is impaired. Our study thus identifies the CSF as a route and lipoprotein particles as a vehicle for long-range transport of biologically active WNT in the central nervous system.

DETERMINATION OF SINGLE NUCLEOTIDE POLYMORPHISM (RS566926) OF WNT5A IN NONSYNDROMIC CLEFT LIP AND PALATE IN A PAKISTANI POPULATION

Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology

2021 Jul 01

Anjum, R;Mehmood, S;Nagi, A;Shahzad, M;Chuadhry, S;
| DOI: 10.1016/j.oooo.2021.03.042

Background Orofacial clefts are the most common birth defects affecting 1 in 750 live births worldwide. Various genetic loci to be involved in nonsyndromic cleft lip and palate has been identified with a variation among populations. Wnt5a is expressed in the frontonasal prominence and maxillary process, which fuse to form the primary palate. Therefore, its dysregulation can lead to certain birth defects along with other diseases. Single nucleotide polymorphism (rs566926) in Wnt5A shows a significant association with nonsyndromic cleft lip and palate in Brazilian and European American populations. Objective The aim of the present study was to describe single nucleotide polymorphism (SNP; rs566926) in patients with nonsyndromic cleft lip and palate in a Pakistani population. Methods This study was conducted on 120 patients with nonsyndromic cleft lip and palate. Demographics and phenotypes were noted. Blood samples were collected in ethylenediaminetetraacetic acid vials. DNA was extracted followed by conventional polymerase chain reaction. SNP (566926) was determined by Sanger sequencing. Data were analyzed using NCBI Blast and SPSS (24.0). Results The mean age of n = 30 patients was 51.33 ± 61.33 months. Sixty percent were male and 40% were female. Regarding cleft types, 70% were both cleft lip and palate, 26% cleft lip only, and 3.3% cleft palate only. Heterozygous polymorphism (T/G) was seen in 33.3% of patients with both cleft lip and palate with bilateral involvement and heterozygous polymorphism (T) was seen in 16.6%. Conclusions SNP in the WNT5A gene is associated with cleft lip and palate, supporting its involvement in pathogenesis of cleft lip and palate. Further studies are recommended to determine the role of Wnt5a genes during craniofacial development.
Creb5 coordinates synovial joint formation with the genesis of articular cartilage

Nature communications

2022 Nov 26

Zhang, CH;Gao, Y;Hung, HH;Zhuo, Z;Grodzinsky, AJ;Lassar, AB;
PMID: 36435829 | DOI: 10.1038/s41467-022-35010-0

While prior work has established that articular cartilage arises from Prg4-expressing perichondrial cells, it is not clear how this process is specifically restricted to the perichondrium of synovial joints. We document that the transcription factor Creb5 is necessary to initiate the expression of signaling molecules that both direct the formation of synovial joints and guide perichondrial tissue to form articular cartilage instead of bone. Creb5 promotes the generation of articular chondrocytes from perichondrial precursors in part by inducing expression of signaling molecules that block a Wnt5a autoregulatory loop in the perichondrium. Postnatal deletion of Creb5 in the articular cartilage leads to loss of both flat superficial zone articular chondrocytes coupled with a loss of both Prg4 and Wif1 expression in the articular cartilage; and a non-cell autonomous up-regulation of Ctgf. Our findings indicate that Creb5 promotes joint formation and the subsequent development of articular chondrocytes by driving the expression of signaling molecules that both specify the joint interzone and simultaneously inhibit a Wnt5a positive-feedback loop in the perichondrium.
Indian Hedgehog links obesity to development of hepatocellular carcinoma.

Oncogene.

2018 Nov 23

Chong YC, Lim TE, Fu Y, Shin EM, Tergaonkar V, Han W.
PMID: 30470823 | DOI: 10.1038/s41388-018-0585-5

Obesity increases the risk of hepatocellular carcinoma (HCC), but precise identification and characterization of druggable oncogenic pathways that contribute to the progression of NAFLD to HCC, and hence to the increased incidence and aggressiveness of HCC in obese individuals is lacking. In this regard, we demonstrate that the Indian Hedgehog (Ihh) signaling pathway is upregulated in the fatty livers of mice consuming a high fat diet, and furthermore sustained in HCC tumors specifically within the context of a NAFLD microenvironment. Using a diet-induced mouse model of HCC wherein only obese mice develop HCC, targeted ablation of hepatocyte-secreted Ihh results in a decreased tumor burden and lower grade tumors. Ihh activation regulates the transdifferentiation of ciliated stellate cells and proliferation of Epcam+ ductal cells to promote fibrosis. Mechanistically, increased expression of hitherto uncharacterized effectors of Hh pathway, namely Myc and Tgf-β2 is critical to the observed physiology. This pro-tumorigenic response is driven by increased expression of Wnt5a to effect a poorly-differentiated and invasive tumor phenotype. Wnt5a secreted from activated stellate cells act on Ror2-expressing hepatocytes. We further demonstrate that Wnt5a expression is also elevated in poorly-differentiated HCC cells, suggesting that these ligands are also able to function in an autocrine positive feedback manner to sustain poorly-differentiated tumors. Taken together, our study provides a mechanistic understanding for how Ihh signaling promotes HCC tumorigenesis specifically in obese mice. We propose that therapeutic targeting of the Hh pathway offers benefit for patients with dietary / NAFLD-driven steatotic HCC.

Single-cell analysis of human basal cell carcinoma reveals novel regulators of tumor growth and the tumor microenvironment

Science advances

2022 Jun 10

Guerrero-Juarez, CF;Lee, GH;Liu, Y;Wang, S;Karikomi, M;Sha, Y;Chow, RY;Nguyen, TTL;Iglesias, VS;Aasi, S;Drummond, ML;Nie, Q;Sarin, K;Atwood, SX;
PMID: 35687691 | DOI: 10.1126/sciadv.abm7981

How basal cell carcinoma (BCC) interacts with its tumor microenvironment to promote growth is unclear. We use singe-cell RNA sequencing to define the human BCC ecosystem and discriminate between normal and malignant epithelial cells. We identify spatial biomarkers of tumors and their surrounding stroma that reinforce the heterogeneity of each tissue type. Combining pseudotime, RNA velocity-PAGA, cellular entropy, and regulon analysis in stromal cells reveals a cancer-specific rewiring of fibroblasts, where STAT1, TGF-β, and inflammatory signals induce a noncanonical WNT5A program that maintains the stromal inflammatory state. Cell-cell communication modeling suggests that tumors respond to the sudden burst of fibroblast-specific inflammatory signaling pathways by producing heat shock proteins, whose expression we validated in situ. Last, dose-dependent treatment with an HSP70 inhibitor suppresses in vitro vismodegib-resistant BCC cell growth, Hedgehog signaling, and in vivo tumor growth in a BCC mouse model, validating HSP70's essential role in tumor growth and reinforcing the critical nature of tumor microenvironment cross-talk in BCC progression.
Deciphering the origins and fates of steroidogenic lineages in the mouse testis

Cell reports

2022 Jun 14

Ademi, H;Djari, C;Mayère, C;Neirijnck, Y;Sararols, P;Rands, CM;Stévant, I;Conne, B;Nef, S;
PMID: 35705036 | DOI: 10.1016/j.celrep.2022.110935

Leydig cells (LCs) are the major androgen-producing cells in the testis. They arise from steroidogenic progenitors (SPs), whose origins, maintenance, and differentiation dynamics remain largely unknown. Single-cell transcriptomics reveal that the mouse steroidogenic lineage is specified as early as embryonic day 12.5 (E12.5) and has a dual mesonephric and coelomic origin. SPs specifically express the Wnt5a gene and evolve rapidly. At E12.5 and E13.5, they give rise first to an intermediate population of pre-LCs, and finally to fetal LCs. At E16.5, SPs possess the characteristics of the dormant progenitors at the origin of adult LCs and are also transcriptionally closely related to peritubular myoid cells (PMCs). In agreement with our in silico analysis, in vivo lineage tracing indicates that Wnt5a-expressing cells are bona fide progenitors of PMCs as well as fetal and adult LCs, contributing to most of the LCs present in the fetal and adult testis.
Cancer cell niche factors secreted from cancer-associated fibroblast by loss of H3K27me3.

Gut

2019 May 13

Maeda M, Takeshima H, Iida N, Hattori N, Yamashita S, Moro H, Yasukawa Y, Nishiyama K, Hashimoto T, Sekine S, Ishii G, Ochiai A, Fukagawa T, Katai H, Sakai Y, Ushijima T.
PMID: 31085554 | DOI: 10.1136/gutjnl-2018-317645

Abstract

OBJECTIVE:

Cancer-associated fibroblasts (CAFs), a major component of cancer stroma, can confer aggressive properties to cancer cells by secreting multiple factors. Their phenotypes are stably maintained, but the mechanisms are not fully understood. We aimed to show the critical role of epigenetic changes in CAFs in maintaining their tumour-promoting capacity and to show the validity of the epigenomic approach in identifying therapeutic targets from CAFs to starve cancer cells.

DESIGN:

Twelve pairs of primary gastric CAFs and their corresponding non-CAFs (NCAFs) were established from surgical specimens. Genome-wide DNA methylation and H3K27me3 analyses were conducted by BeadArray 450K and ChIP-on-Chip, respectively. Functions of potential a therapeutic target were analysed by inhibiting it, and prognostic impact was assessed in a database.

RESULTS:

CAFs had diverse and distinct DNA methylation and H3K27me3 patterns compared with NCAFs. Loss of H3K27me3, but not DNA methylation, in CAFs was enriched for genes involved in stem cell niche, cell growth, tissue development and stromal-epithelial interactions, such as WNT5A, GREM1, NOG and IGF2. Among these, we revealed that WNT5A, which had been considered to be derived from cancer cells, was highly expressed in cancer stromal fibroblasts, and was associated with poor prognosis. Inhibition of secreted WNT5A from CAFs suppressed cancer cell growth and migration.

CONCLUSIONS:

H3K27me3 plays a crucial role in defining tumour-promoting capacities of CAFs, and multiple stem cell niche factors were secreted from CAFs due to loss of H3K27me3. The validity of the epigenetic approach to uncover therapeutic targets for cancer-starving therapy was demonstrated.

Copy Number Variant Analysis and Genome-wide Association Study Identify Loci with Large Effect for Vesicoureteral Reflux

Journal of the American Society of Nephrology : JASN

2021 Feb 17

Verbitsky, M;Krithivasan, P;Batourina, E;Khan, A;Graham, SE;Marasà, M;Kim, H;Lim, TY;Weng, PL;Sánchez-Rodríguez, E;Mitrotti, A;Ahram, DF;Zanoni, F;Fasel, DA;Westland, R;Sampson, MG;Zhang, JY;Bodria, M;Kil, BH;Shril, S;Gesualdo, L;Torri, F;Scolari, F;Izzi, C;van Wijk, JAE;Saraga, M;Santoro, D;Conti, G;Barton, DE;Dobson, MG;Puri, P;Furth, SL;Warady, BA;Pisani, I;Fiaccadori, E;Allegri, L;Degl'Innocenti, ML;Piaggio, G;Alam, S;Gigante, M;Zaza, G;Esposito, P;Lin, F;Simões-E-Silva, AC;Brodkiewicz, A;Drozdz, D;Zachwieja, K;Miklaszewska, M;Szczepanska, M;Adamczyk, P;Tkaczyk, M;Tomczyk, D;Sikora, P;Mizerska-Wasiak, M;Krzemien, G;Szmigielska, A;Zaniew, M;Lozanovski, VJ;Gucev, Z;Ionita-Laza, I;Stanaway, IB;Crosslin, DR;Wong, CS;Hildebrandt, F;Barasch, J;Kenny, EE;Loos, RJF;Levy, B;Ghiggeri, GM;Hakonarson, H;Latos-Bieleńska, A;Materna-Kiryluk, A;Darlow, JM;Tasic, V;Willer, C;Kiryluk, K;Sanna-Cherchi, S;Mendelsohn, CL;Gharavi, AG;
PMID: 33597122 | DOI: 10.1681/ASN.2020050681

Vesicoureteral reflux (VUR) is a common, familial genitourinary disorder, and a major cause of pediatric urinary tract infection (UTI) and kidney failure. The genetic basis of VUR is not well understood. A diagnostic analysis sought rare, pathogenic copy number variant (CNV) disorders among 1737 patients with VUR. A GWAS was performed in 1395 patients and 5366 controls, of European ancestry. Altogether, 3% of VUR patients harbored an undiagnosed rare CNV disorder, such as the 1q21.1, 16p11.2, 22q11.21, and triple X syndromes ((OR, 3.12; 95% CI, 2.10 to 4.54; P=6.35×10-8) The GWAS identified three study-wide significant and five suggestive loci with large effects (ORs, 1.41-6.9), containing canonical developmental genes expressed in the developing urinary tract (WDPCP, OTX1, BMP5, VANGL1, and WNT5A). In particular, 3.3% of VUR patients were homozygous for an intronic variant in WDPCP (rs13013890; OR, 3.65; 95% CI, 2.39 to 5.56; P=1.86×10-9). This locus was associated with multiple genitourinary phenotypes in the UK Biobank and eMERGE studies. Analysis of Wnt5a mutant mice confirmed the role of Wnt5a signaling in bladder and ureteric morphogenesis. These data demonstrate the genetic heterogeneity of VUR. Altogether, 6% of patients with VUR harbored a rare CNV or a common variant genotype conferring an OR >3. Identification of these genetic risk factors has multiple implications for clinical care and for analysis of outcomes in VUR.

Pages

  • 1
  • 2
  • 3
  • 4
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?