ACD can configure probes for the various manual and automated assays for WNT2B for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
European journal of human genetics : EJHG
2021 Feb 01
Zhang, YJ;Jimenez, L;Azova, S;Kremen, J;Chan, YM;Elhusseiny, AM;Saeed, H;Goldsmith, J;Al-Ibraheemi, A;O'Connell, AE;Kovbasnjuk, O;Rodan, L;Agrawal, PB;Thiagarajah, JR;
PMID: 33526876 | DOI: 10.1038/s41431-021-00812-1
Cellular and molecular gastroenterology and hepatology
2021 Dec 29
Kim, TY;Kim, S;Kim, Y;Lee, YS;Lee, S;Lee, SH;Kweon, MN;
PMID: 34971821 | DOI: 10.1016/j.jcmgh.2021.12.015
Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):E5262-71.
Tan SH, Senarath-Yapa K, Chung MT, Longaker MT, Wu JY, Nusse R.
Dev Biol.
2017 Jan 30
Goad J, Ko YA, Kumar M, Syed SM, Tanwar PS.
PMID: 28153546 | DOI: 10.1016/j.ydbio.2017.01.015
In mice, implantation always occurs towards the antimesometrial side of the uterus, while the placenta develops at the mesometrial side. What determines this particular orientation of the implanting blastocyst remains unclear. Uterine glands are critical for implantation and pregnancy. In this study, we showed that uterine gland development and active Wnt signalling activity is limited to the antimesometrial side of the uterus. Dkk2, a known antagonist of Wnt signalling, is only present at the mesometrial side of the uterus. Imaging of whole uterus, thick uterine sections (100-1000μm), and individual glands revealed that uterine glands are simple tubes with branches that are directly connected to the luminal epithelium and are only present towards the antimesometrial side of the uterus. By developing a unique mouse model targeting the uterine epithelium, we demonstrated that Wnt/β-catenin signaling is essential for prepubertal gland formation and normal implantation, but dispensable for postpartum gland development and regeneration. Our results for the first time have provided a probable explanation for the antimesometrial bias for implantation.
Data in Brief
2017 Apr 08
Goad J, Ko YA, Syed SM, Crossingham YJ, Tanwar PS.
PMID: - | DOI: 10.1016/j.dib.2017.03.047
Wnt signaling plays an important role in uterine organogenesis and oncogenesis. Our mRNA expression data documents the expression of various Wnt pathway members during the key stages of uterine epithelial gland development. Our data illustrates the expression of Wnt signaling inhibitors (Axin2, Sfrp2, Sfrp4, Dkk1 and Dkk3) in mice uteri at postnatal day 6 (PND 6) and day 15 (PND 15). They also describe the expression pattern of the Wnt ligands (Wnt1, Wnt2, Wnt2b, Wnt3, Wnt3a, Wnt5b, Wnt7b, Wnt8a, Wnt8b, Wnt9a, Wnt9b, Wnt10a and Wnt10b) in mice uteri with or without progesterone treatment. Detailed interpretation and discussion of these data is presented in the research article entitled “Differential Wnt signaling activity limits epithelial gland development to the anti-mesometrial side of the mouse uterus” [1].
Development.
2017 Jul 25
Ghosh A, Syed SM, Tanwar PS.
PMID: 28743800 | DOI: 10.1242/dev.149989
The epithelial lining of the Fallopian tube is vital for fertility, providing nutrition to gametes, and facilitating their transport. It is composed of two major cell types: secretory cells and ciliated cells. Interestingly, human ovarian cancer precursor lesions are primarily consisting of secretory cells. It is unclear why secretory cells are the dominant cell type in these lesions. Additionally, the underlying mechanisms governing Fallopian tube epithelial homoeostasis are currently unknown. In the present study, we showed that across the different developmental stages of mouse oviduct, secretory cells are the most frequently dividing cells of the oviductal epithelium. In vivo genetic cell lineage tracing showed that secretory cells not only self-renew, but also give rise to ciliated cells. Analysis of a Wnt reporter mouse model and different Wnt target genes showed that the Wnt signaling pathway is involved in oviductal epithelial homoeostasis. By developing two triple transgenic mouse models, we showed that Wnt/β-catenin signaling is essential for self-renewal as well as differentiation of secretory cells. In summary, our results provide mechanistic insight into oviductal epithelial homoeostasis.
Cell Stem Cell.
2018 Jan 10
Seino T, Kawasaki S, Shimokawa M, Tamagawa H, Toshimitsu K, Fujii M, Ohta Y, Matano M, Nanki K, Kawasaki K, Takahashi S, Sugimoto S, Iwasaki E, Takagi J, Itoi T, Kitago M, Kitagawa Y, Kanai T, Sato T.
PMID: 29337182 | DOI: 10.1016/j.stem.2017.12.009
Despite recent efforts to dissect the inter-tumor heterogeneity of pancreatic ductal adenocarcinoma (PDAC) by determining prognosis-predictive gene expression signatures for specific subtypes, their functional differences remain elusive. Here, we established a pancreatic tumor organoid library encompassing 39 patient-derived PDACs and identified 3 functional subtypes based on their stem cell niche factor dependencies on Wnt and R-spondin. A Wnt-non-producing subtype required Wnt from cancer-associated fibroblasts, whereas a Wnt-producing subtype autonomously secreted Wnt ligands and an R-spondin-independent subtype grew in the absence of Wnt and R-spondin. Transcriptome analysis of PDAC organoids revealed gene-expression signatures that associated Wnt niche subtypes with GATA6-dependent gene expression subtypes, which were functionally supported by genetic perturbation of GATA6. Furthermore, CRISPR-Cas9-based genome editing of PDAC driver genes (KRAS, CDKN2A, SMAD4, and TP53) demonstrated non-genetic acquisition of Wnt niche independence during pancreas tumorigenesis. Collectively, our results reveal functional heterogeneity of Wnt niche independency in PDAC that is non-genetically formed through tumor progression.
Science.
2018 Jan 25
Lescroart F, Wang X, Lin X, Swedlund B, Gargouri S, Sànchez-Dànes A, Moignard V, Dubois C, Paulissen C, Kinston S, Göttgens B, Blanpain C.
PMID: 29371425 | DOI: 10.1126/science.aao4174
Mouse heart development arises from Mesp1 expressing cardiovascular progenitors (CPs) that are specified during gastrulation. The molecular processes that control early regional and lineage segregation of CPs have been unclear. Here, we performed single cell RNA-sequencing of WT and Mesp1 null CPs in mice. We showed that populations of Mesp1 CPs are molecularly distinct and span the continuum between epiblast and later mesodermal cells including hematopoietic progenitors. Single cell transcriptome analysis of Mesp1-deficient CPs showed that Mesp1 is required for the exit from the pluripotent state and the induction of the cardiovascular gene expression program. We identified distinct populations of Mesp1 CPs that correspond to progenitors committed to different cell lineages and regions of the heart, identifying the molecular features associated with early lineage restriction and regional segregation of the heart at the early stage of mouse gastrulation.
Cell Host Microbe. 2018 Dec 12.
2018 Dec 12
Lee YS, Kim TY, Kim Y, Lee SH, Kim S, Kang SW, Yang JY, Baek IJ, Sung YH, Park YY, Hwang SW, O E, Kim KS, Liu S, Kamada N, Gao N, Kweon MN.
PMID: 30543778 | DOI: 10.1016/j.chom.2018.11.002
Genes Dev.
2019 Jan 28
Basham KJ, Rodriguez S, Turcu AF, Lerario AM, Logan CY, Rysztak MR, Gomez-Sanchez CE, Breault DT, Koo BK, Clevers H, Nusse R, Val P, Hammer GD.
PMID: 30692207 | DOI: 10.1101/gad.317412.118
Spatiotemporal control of Wnt signaling is essential for the development and homeostasis of many tissues. The transmembrane E3 ubiquitin ligases ZNRF3 (zinc and ring finger 3) and RNF43 (ring finger protein 43) antagonize Wnt signaling by promoting degradation of frizzled receptors. ZNRF3 and RNF43 are frequently inactivated in human cancer, but the molecular and therapeutic implications remain unclear. Here, we demonstrate that adrenocortical-specific loss of ZNRF3, but not RNF43, results in adrenal hyperplasia that depends on Porcupine-mediated Wnt ligand secretion. Furthermore, we discovered a Wnt/β-catenin signaling gradient in the adrenal cortex that is disrupted upon loss of ZNRF3. Unlike β-catenin gain-of-function models, which induce high Wnt/β-catenin activation and expansion of the peripheral cortex, ZNRF3 loss triggers activation of moderate-level Wnt/β-catenin signaling that drives proliferative expansion of only the histologically and functionally distinct inner cortex. Genetically reducing β-catenin dosage significantly reverses the ZNRF3-deficient phenotype. Thus, homeostatic maintenance of the adrenal cortex is dependent on varying levels of Wnt/β-catenin activation, which is regulated by ZNRF3.
Cell Rep
2019 Jun 04
Coquenlorge S, Yin WC, Yung T, Pan J, Zhang X, Mo R, Belik J, Hui CC, Kim TH.
PMID: 31167144 | DOI: 10.1016/j.celrep.2019.05.016
Gut mesenchyme provides key stem cell niche signals such as Wnt ligands, but how these signals are regulated is unclear. Because Hedgehog (Hh) signaling is critical for gut mesenchymal development and tumorigenesis, we investigated Hh-mediated mechanisms by analyzing mice deleted for key negative regulators of Hh signaling, Sufu and/or Spop, in the gut mesenchyme, and demonstrated their dosage-dependent roles. Although these mutants exhibit abnormal mesenchymal cell growth and functionally defective muscle layers, villification is completed with proper mesenchymal clustering, implying a permissive role for Hh signaling. These mesenchymal defects are partially rescued by Gli2 reduction. Consistent with increased epithelial proliferation caused by abnormal Hh activation in development, Sufu reduction promotes intestinal tumorigenesis, whereas Gli2 heterozygosity suppresses it. Our analyses of chromatin and GLI2 binding genomic regions reveal its transcriptional regulation of stem cell niche signals through enhancers, providing mechanistic insight into the intestinal stem cell niche in development and tumorigenesis
Nat Commun
2020 Jan 17
Kim JE Fei L, Yin WC, Coquenlorge S, Rao-Bhatia A, Zhang X, Shi SSW, Lee JH, Hahn NA, Rizvi W, Kim KH, Sung HK, Hui CC, Guo G, Kim TH
PMID: 31953387 | DOI: 10.1038/s41467-019-14058-5
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com