Nectow AR, Schneeberger M, Zhang H, Field BC, Renier N, Azevedo E, Patel B, Liang Y, Mitra S, Tessier-Lavigne M, Han MH, Friedman JM.
PMID: 28753423 | DOI: 10.1016/j.cell.2017.06.045
Hunger, driven by negative energy balance, elicits the search for and consumption of food. While this response is in part mediated by neurons in the hypothalamus, the role of specific cell types in other brain regions is less well defined. Here, we show that neurons in the dorsal raphe nucleus, expressing vesicular transporters for GABA or glutamate (hereafter, DRNVgat and DRNVGLUT3 neurons), are reciprocally activated by changes in energy balance and that modulating their activity has opposite effects on feeding-DRNVgat neurons increase, whereas DRNVGLUT3 neurons suppress, food intake. Furthermore, modulation of these neurons in obese (ob/ob) mice suppresses food intake and body weight and normalizes locomotor activity. Finally, using molecular profiling, we identify druggable targets in these neurons and show that local infusion of agonists for specific receptors on these neurons has potent effects on feeding. These data establish the DRN as an important node controlling energy balance. PAPERCLIP.
The Journal of neuroscience : the official journal of the Society for Neuroscience
Fudge, JL;Kelly, EA;Hackett, TA;
PMID: 36280261 | DOI: 10.1523/JNEUROSCI.1453-22.2022
The central extended amygdala (CEA) and ventral pallidum (VP) are involved in diverse motivated behaviors based on rodent models. These structures are conserved, but expanded, in higher primates including human. Corticotropin releasing factor (CRF), a canonical 'stress molecule' associated with the CEA and VP circuitry across species, is dynamically regulated by stress and drugs of abuse and misuse. CRF's effects on circuits critically depend on its colocation with primary 'fast' transmitters, making this crucial for understanding circuit effects. We surveyed the distribution and colocalization of CRF-, VGluT2- (vesicular glutamate transporter 2) and VGAT- (vesicular GABA transporter) mRNA in specific subregions of the CEA and VP in young male monkeys. Although CRF-containing neurons were clustered in the lateral central bed nucleus (BSTLcn), the majority were broadly dispersed throughout other CEA subregions, and the VP. CRF/VGAT-only neurons were highest in the BSTLcn, lateral central amygdala nucleus (CeLcn), and medial central amygdala nucleus (CeM) (74%, 73%, and 85%, respectively). In contrast, lower percentages of CRF/VGAT only neurons populated the sublenticular extended amygdala (SLEAc), ventrolateral bed nucleus (BSTLP), and VP (53%, 54%, 17%, respectively), which had higher complements of CRF/VGAT/VGluT2 labeled neurons (33%, 29%, 67%, respectively). Thus, the majority of CRF-neurons at the 'poles' (BSTLcn and CeLcn/CeM) of the CEA are inhibitory, while the 'extended' BSTLP and SLEAc subregions, and neighboring VP, have a more complex profile with admixtures of 'multiplexed' excitatory CRF neurons. CRF's colocalization with its various fast transmitters is likely circuit-specific, and relevant for understanding CRF actions on specific target sites.SIGNIFICANCE STATEMENT:The central extended amygdala (CEA) and ventral pallidum (VP) regulate multiple motivated behaviors through differential downstream projections. The stress neuropeptide corticotropin releasing factor (CRF) is enriched in the CEA, and is thought to 'set the gain' through modulatory effects on co-expressed primary transmitters. Using protein and transcript assays in monkey, we found that CRF neurons are broadly and diffusely distributed in CEA and VP. CRF mRNA+ neurons colocalize with VGAT (GABA) and VGluT2 (glutamate) mRNAs in different proportions depending on subregion. CRF mRNA was also co-expressed in a subpopulation of VGAT/VGluT2 mRNA ('multiplexed') cells which were most prominent in the VP and 'pallidal'-like parts of the CEA. Heterogeneous CRF and fast transmitter co-expression across CEA/VP subregions implies circuit-specific effects.
Heinsbroek JA1, Bobadilla AC2, Dereschewitz E2, Assali A2, Chalhoub RM2, Cowan CW2, Kalivas PW3.
PMID: 32049028 | DOI: 10.1016/j.celrep.2020.01.023
Projections from the nucleus accumbens to the ventral pallidum (VP) regulate relapse in animal models of addiction. The VP contains GABAergic (VPGABA) and glutamatergic (VPGlu) neurons, and a subpopulation of GABAergic neurons co-express enkephalin (VPPenk). Rabies tracing reveals that VPGlu and VPPenk neurons receive preferential innervation from upstream D1- relative to D2-expressing accumbens neurons. Chemogenetic stimulation of VPGlu neurons inhibits, whereas stimulation of VPGABA and VPPenk neurons potentiates cocaine seeking in mice withdrawn from intravenous cocaine self-administration. Calcium imaging reveals cell type-specific activity patterns when animals learn to suppress drug seeking during extinction training versus engaging in cue-induced cocaine seeking. During cued seeking, VPGABA neurons increase their overall activity, and VPPenk neurons are selectively activated around nose pokes for cocaine. In contrast, VPGlu neurons increase their spike rate following extinction training. These data show that VP subpopulations differentially encode and regulate cocaine seeking, with VPPenk and VPGABA neurons facilitating and VPGlu neurons inhibiting cocaine seeking
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
Alvarez-Bagnarol, Y;García, R;Vendruscolo, LF;Morales, M;
PMID: 37270620 | DOI: 10.1038/s41386-023-01620-5
Opioid withdrawal signs, such as hyperalgesia, are manifestations of opioid use disorder that may contribute to opioid seeking and taking. We have previously identified an association between dorsal raphe (DR) neurons and the expression of hyperalgesia during spontaneous heroin withdrawal. Here, we found that chemogenetic inhibition of DR neurons decreased hyperalgesia during spontaneous heroin withdrawal in male and female C57/B6 mice. By neuroanatomy, we identified three major subtypes of DR neurons expressing μ-opioid receptors (MOR) that were activated in hyperalgesia during spontaneous withdrawal, those expressing vesicular GABA transporter (VGaT), glutamate transporter 3 (VGluT3), or co-expressing VGluT3 and tryptophan hydroxylase (TPH). In contrast, we identified a small population of DR-MOR neurons expressing solely TPH, which were not activated in hyperalgesia during spontaneous withdrawal. Collectively, these findings indicate a role of the DR in hyperalgesia during spontaneous heroin withdrawal mediated, in part, by the activation of local MOR-GABAergic, MOR-glutamatergic and MOR-co-releasing glutamatergic-serotonergic neurons. We found that specific chemogenetic inhibition of DR-VGaT neurons blocked hyperalgesia during spontaneous heroin withdrawal in male and female mice. Collectively, these findings indicate that DR-GABAergic neurons play a role in the expression of hyperalgesia during spontaneous heroin withdrawal.
Proceedings of the National Academy of Sciences of the United States of America
Zhong, W;Barde, S;Mitsios, N;Adori, C;Oksvold, P;Feilitzen, KV;O'Leary, L;Csiba, L;Hortobágyi, T;Szocsics, P;Mechawar, N;Maglóczky, Z;Renner, É;Palkovits, M;Uhlén, M;Mulder, J;Hökfelt, T;
PMID: 35947618 | DOI: 10.1073/pnas.2123146119
Human prefrontal cortex (hPFC) is a complex brain region involved in cognitive and emotional processes and several psychiatric disorders. Here, we present an overview of the distribution of the peptidergic systems in 17 subregions of hPFC and three reference cortices obtained by microdissection and based on RNA sequencing and RNAscope methods integrated with published single-cell transcriptomics data. We detected expression of 60 neuropeptides and 60 neuropeptide receptors in at least one of the hPFC subregions. The results reveal that the peptidergic landscape in PFC consists of closely located and functionally different subregions with unique peptide/transmitter-related profiles. Neuropeptide-rich PFC subregions were identified, encompassing regions from anterior cingulate cortex/orbitofrontal gyrus. Furthermore, marked differences in gene expression exist between different PFC regions (>5-fold; cocaine and amphetamine-regulated transcript peptide) as well as between PFC regions and reference regions, for example, for somatostatin and several receptors. We suggest that the present approach allows definition of, still hypothetical, microcircuits exemplified by glutamatergic neurons expressing a peptide cotransmitter either as an agonist (hypocretin/orexin) or antagonist (galanin). Specific neuropeptide receptors have been identified as possible targets for neuronal afferents and, interestingly, peripheral blood-borne peptide hormones (leptin, adiponectin, gastric inhibitory peptide, glucagon-like peptides, and peptide YY). Together with other recent publications, our results support the view that neuropeptide systems may play an important role in hPFC and underpin the concept that neuropeptide signaling helps stabilize circuit connectivity and fine-tune/modulate PFC functions executed during health and disease.
Cannabidiol produces distinct U-shaped dose-response effects on cocaine conditioned place preference and associated recruitment of prelimbic neurons in male rats
Biological Psychiatry Global Open Science
Nedelescu, H;Wagner, G;De Ness, G;Carrol, A;Kerr, T;Wang, J;Zhang, S;Chang, S;Than, A;Emerson, N;Suto, N;Weiss, F;
| DOI: 10.1016/j.bpsgos.2021.06.014
Background Cannabidiol (CBD) has received attention for the treatment of Substance Use Disorders. In preclinical models of relapse, CBD attenuates drug seeking across several drugs of abuse, including cocaine. However, in these models, CBD has not been consistently effective. This inconsistency in CBD effects may be related to presently insufficient information on the full spectrum of CBD dose effects on drug-related behaviors. Methods We address this issue by establishing a full dose-response profile of CBD’s actions using expression of cocaine-induced conditioned place preference (CPP) as a model for drug motivated behavior in male rats, and by concurrently identifying dose-dependent effects of CBD on underlying neuronal activation as well as distinct neuronal phenotypes showing dose-dependent activation changes. Additionally, CBD levels in plasma and brain were established. Results CBD produced linear increases in CBD brain/plasma concentrations but suppressed CPP in a distinct U-shaped manner. In parallel with its behavioral effects, CBD produced U-shaped suppressant effects on neuronal activation in the prelimbic but not infralimbic cortex or nucleus accumbens core and shell. RNAscope in situ hybridization identified suppression of glutamatergic and GABAergic signaling in the prelimbic cortex as a possible cellular mechanism for the attenuation of cocaine CPP by CBD. Conclusions The findings extend previous evidence on the potential of CBD in preventing drug motivated behavior. However, CBD’s dose-response profile may have important dosing implications for future clinical applications and may contribute to the understanding of discrepant CBD effects on drug seeking in the literature.