ACD can configure probes for the various manual and automated assays for VGAT for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Molecular Metabolism
2018 May 08
Schneeberger M, Tan K, Nectow AR, Parolari L, Caglar C, Azevedo E, Li Z, Domingos A, Friedman JM.
PMID: - | DOI: 10.1016/j.molmet.2018.05.001
Abstract
Objectives
Melanin-concentrating hormone (MCH) neurons in the lateral hypothalamus (LH) regulate food intake and body weight, glucose metabolism and convey the reward value of sucrose. In this report, we set out to establish the respective roles of MCH and conventional neurotransmitters in these neurons.
Methods
MCH neurons were profiled using Cre-dependent molecular profiling technologies (vTRAP). MCHCre mice crossed to Vglut2fl/flmice or to DTRfl/flwere used to identify the role of glutamate in MCH neurons. We assessed metabolic parameters such as body composition, glucose tolerance, or sucrose preference.
Results
We found that nearly all MCH neurons in the LH are glutamatergic and that a loss of glutamatergic signaling from MCH neurons from a glutamate transporter (VGlut2) knockout leads to a reduced weight, hypophagia and hyperkinetic behavior with improved glucose tolerance and a loss of sucrose preference. These effects are indistinguishable from those seen after ablation of MCH neurons. These findings are in contrast to those seen in mice with a knockout of the MCH neuropeptide, which show normal glucose preference and do not have improved glucose tolerance.
Conclusions
Overall, these data show that the vast majority of MCH neurons are glutamatergic, and that glutamate and MCH signaling mediate partially overlapping functions by these neurons, presumably by activating partially overlapping postsynaptic populations. The diverse functional effects of MCH neurons are thus mediated by a composite of glutamate and MCH signaling.
Neuron
2018 May 10
Courtney NA, Briguglio JS, Bradberry MM, Greer C, Chapman ER.
PMID: - | DOI: 10.1016/j.neuron.2018.04.022
Spontaneous neurotransmitter release (mini) is an important form of Ca2+-dependent synaptic transmission that occurs in the absence of action potentials. A molecular understanding of this process requires an identification of the underlying Ca2+ sensors. Here, we address the roles of the relatively low- and high-affinity Ca2+ sensors, synapotagmin-1 (syt1) and Doc2α/β, respectively. We found that both syt1 and Doc2 regulate minis, but, surprisingly, their relative contributions depend on whether release was from excitatory or inhibitory neurons. Doc2α promoted glutamatergic minis, while Doc2β and syt1 both regulated GABAergic minis. We identified Ca2+ ligand mutations in Doc2 that either disrupted or constitutively activated the regulation of minis. Finally, Ca2+ entry via voltage-gated Ca2+ channels triggered miniature GABA release by activating syt1, but had no effect on Doc2-driven minis. This work reveals an unexpected divergence in the regulation of spontaneous excitatory and inhibitory transmission in terms of both Ca2+ sensors and sources.
ILAR J.
2018 Nov 21
Himmel LE, Hackett TA, Moore JL, Adams WR, Thomas G, Novitskaya T, Caprioli RM, Zijlstra A, Mahadevan-Jansen A, Boyd KL.
PMID: 30462242 | DOI: 10.1093/ilar/ily004
For decades, histopathology with routine hematoxylin and eosin staining has been and remains the gold standard for reaching a morphologic diagnosis in tissue samples from humans and veterinary species. However, within the past decade, there has been exponential growth in advanced techniques for in situ tissue biomarker imaging that bridge the divide between anatomic and molecular pathology. It is now possible to simultaneously observe localization and expression magnitude of multiple protein, nucleic acid, and molecular targets in tissue sections and apply machine learning to synthesize vast, image-derived datasets. As these technologies become more sophisticated and widely available, a team-science approach involving subspecialists with medical, engineering, and physics backgrounds is critical to upholding quality and validity in studies generating these data. The purpose of this manuscript is to detail the scientific premise, tools and training, quality control, and data collection and analysis considerations needed for the most prominent advanced imaging technologies currently applied in tissue sections: immunofluorescence, in situ hybridization, laser capture microdissection, matrix-assisted laser desorption ionization imaging mass spectrometry, and spectroscopic/optical methods. We conclude with a brief overview of future directions for ex vivo and in vivo imaging techniques.
Nat Neurosci
2019 Mar 18
Ahrlund-Richter S, Xuan Y, van Lunteren JA, Kim H, Ortiz C, Pollak Dorocic I, Meletis K and Carlen M
PMID: 30886408 | DOI: 10.1038/s41593-019-0354-y
Cell Rep.
2019 May 14
Rizzi G, Tan KR.
PMID: 31091455 | DOI: 10.1016/j.celrep.2019.04.068
Locomotion relies on the activity of basal ganglia networks, where, as the output, the substantia nigra pars reticulata (SNr) integrates incoming signals and relays them to downstream areas. The cellular and circuit substrates of such a complex function remain unclear. We hypothesized that the SNr controls different aspects of locomotion through coordinated cell-type-specific sub-circuits. Using anatomical mapping, single-cell qPCR, and electrophysiological techniques, we identified two SNr sub-populations: the centromedial-thalamo projectors (CMps) and the SN compacta projectors (SNcps), which are genetically targeted based on vesicular transporter for gamma-aminobutyric acid (VGAT) or parvalbumin (PV) expression, respectively. Optogenetic manipulation of these two sub-types across a series of motor tests provided evidence that they govern different aspects of motor behavior. While CMp activity supports the continuity of motor patterns, SNcp modulates the immediate motor drive behind them. Collectively, our data suggest that at least two different sub-circuits arise from the SNr, engage different behavioral motor components, and collaborate to produce correct locomotion.
Nat Commun
2019 May 21
Rizzi G, Coban M, Tan KR.
PMID: 31113944 | DOI: 10.1038/s41467-019-10223-y
The red nucleus (RN) is required for limb control, specifically fine motor coordination. There is some evidence for a role of the RN in reaching and grasping, mainly from lesion studies, but results so far have been inconsistent. In addition, the role of RN neurons in such learned motor functions at the level of synaptic transmission has been largely neglected. Here, we show that Vglut2-expressing RN neurons undergo plastic events and encode the optimization of fine movements. RN light-ablation severely impairs reaching and grasping functions while sparing general locomotion. We identify a neuronal population co-expressing Vglut2, PV and C1QL2, which specifically undergoes training-dependent plasticity. Selective chemo-genetic inhibition of these neurons perturbs reaching and grasping skills. Our study highlights the role of the Vglut2-positive rubral population in complex fine motor tasks, with its related plasticity representing an important starting point for the investigation of mechanistic substrates of fine motor coordination training.
Cell Rep
2020 Feb 11
Heinsbroek JA1, Bobadilla AC2, Dereschewitz E2, Assali A2, Chalhoub RM2, Cowan CW2, Kalivas PW3.
PMID: 32049028 | DOI: 10.1016/j.celrep.2020.01.023
Nat Commun
2020 Jan 14
Lu L, Ren Y, Yu T, Liu Z, Wang S, Tan L, Zeng J, Feng Q, Lin R, Liu Y, Guo Q, Luo M
PMID: 31937768 | DOI: 10.1038/s41467-019-14116-y
Science advances
2023 Jun 23
Liu, HM;Liao, ML;Liu, GX;Wang, LJ;Lian, D;Ren, J;Chi, XT;Lv, ZR;Liu, M;Wu, Y;Xu, T;Wei, JY;Feng, X;Jiang, B;Zhang, XQ;Xin, WJ;
PMID: 37352353 | DOI: 10.1126/sciadv.adg5849
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
2023 Jun 03
Alvarez-Bagnarol, Y;García, R;Vendruscolo, LF;Morales, M;
PMID: 37270620 | DOI: 10.1038/s41386-023-01620-5
Signal transduction and targeted therapy
2023 May 17
Zheng, Y;Xu, C;Sun, J;Ming, W;Dai, S;Shao, Y;Qiu, X;Li, M;Shen, C;Xu, J;Fei, F;Fang, J;Jiang, X;Zheng, G;Hu, W;Wang, Y;Wang, S;Ding, M;Chen, Z;
PMID: 37193687 | DOI: 10.1038/s41392-023-01404-9
Frontiers in neuroendocrinology
2023 May 05
Beekly, BG;Rupp, A;Burgess, CR;Elias, CF;
PMID: 37149229 | DOI: 10.1016/j.yfrne.2023.101069
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com