Chen, Z;Chen, G;Zhong, J;Jiang, S;Lai, S;Xu, H;Deng, X;Li, F;Lu, S;Zhou, K;Li, C;Liu, Z;Zhang, X;Zhu, Y;
PMID: 36028570 | DOI: 10.1038/s41380-022-01742-0
Feeding behavior is regulated by both the homeostatic needs of the body and hedonic values of the food. Easy access to palatable energy-dense foods and the consequent obesity epidemic stress the urgent need for a better understanding of neural circuits that regulate hedonic feeding. Here, we report that neurotensin-positive neurons in the lateral septum (LSNts) play a crucial role in regulating hedonic feeding. Silencing LSNts specifically promotes feeding of palatable food, whereas activation of LSNts suppresses overall feeding. LSNts neurons project to the tuberal nucleus (TU) via GABA signaling to regulate hedonic feeding, while the neurotensin signal from LSNts→the supramammillary nucleus (SUM) is sufficient to suppress overall feeding. In vivo calcium imaging and optogenetic manipulation reveal two populations of LSNts neurons that are activated and inhibited during feeding, which contribute to food seeking and consumption, respectively. Chronic activation of LSNts or LSNts→TU is sufficient to reduce high-fat diet-induced obesity. Our findings suggest that LSNts→TU is a key pathway in regulating hedonic feeding.
De Luca, R;Nardone, S;Grace, KP;Venner, A;Cristofolini, M;Bandaru, SS;Sohn, LT;Kong, D;Mochizuki, T;Viberti, B;Zhu, L;Zito, A;Scammell, TE;Saper, CB;Lowell, BB;Fuller, PM;Arrigoni, E;
PMID: 35851580 | DOI: 10.1038/s41467-022-31591-y
Humans and animals lacking orexin neurons exhibit daytime sleepiness, sleep attacks, and state instability. While the circuit basis by which orexin neurons contribute to consolidated wakefulness remains unclear, existing models posit that orexin neurons provide their wake-stabilizing influence by exerting excitatory tone on other brain arousal nodes. Here we show using in vivo optogenetics, in vitro optogenetic-based circuit mapping, and single-cell transcriptomics that orexin neurons also contribute to arousal maintenance through indirect inhibition of sleep-promoting neurons of the ventrolateral preoptic nucleus. Activation of this subcortical circuit rapidly drives wakefulness from sleep by differentially modulating the activity of ventrolateral preoptic neurons. We further identify and characterize a feedforward circuit through which orexin (and co-released glutamate) acts to indirectly target and inhibit sleep-promoting ventrolateral preoptic neurons to produce arousal. This revealed circuitry provides an alternate framework for understanding how orexin neurons contribute to the maintenance of consolidated wakefulness and stabilize behavioral state.
The retinal ipRGC-preoptic circuit mediates the acute effect of light on sleep
Zhang, Z;Beier, C;Weil, T;Hattar, S;
PMID: 34433830 | DOI: 10.1038/s41467-021-25378-w
Light regulates daily sleep rhythms by a neural circuit that connects intrinsically photosensitive retinal ganglion cells (ipRGCs) to the circadian pacemaker, the suprachiasmatic nucleus. Light, however, also acutely affects sleep in a circadian-independent manner. The neural circuits involving the acute effect of light on sleep remain unknown. Here we uncovered a neural circuit that drives this acute light response, independent of the suprachiasmatic nucleus, but still through ipRGCs. We show that ipRGCs substantially innervate the preoptic area (POA) to mediate the acute light effect on sleep in mice. Consistently, activation of either the POA projecting ipRGCs or the light-responsive POA neurons increased non-rapid eye movement (NREM) sleep without influencing REM sleep. In addition, inhibition of the light-responsive POA neurons blocked the acute light effects on NREM sleep. The predominant light-responsive POA neurons that receive ipRGC input belong to the corticotropin-releasing hormone subpopulation. Remarkably, the light-responsive POA neurons are inhibitory and project to well-known wakefulness-promoting brain regions, such as the tuberomammillary nucleus and the lateral hypothalamus. Therefore, activation of the ipRGC-POA circuit inhibits arousal brain regions to drive light-induced NREM sleep. Our findings reveal a functional retina-brain circuit that is both necessary and sufficient for the acute effect of light on sleep.
Functionally distinct POMC-expressing neuron subpopulations in hypothalamus revealed by intersectional targeting
Biglari, N;Gaziano, I;Schumacher, J;Radermacher, J;Paeger, L;Klemm, P;Chen, W;Corneliussen, S;Wunderlich, CM;Sue, M;Vollmar, S;Klöckener, T;Sotelo-Hitschfeld, T;Abbasloo, A;Edenhofer, F;Reimann, F;Gribble, FM;Fenselau, H;Kloppenburg, P;Wunderlich, FT;Brüning, JC;
PMID: 34002087 | DOI: 10.1038/s41593-021-00854-0
Pro-opiomelanocortin (POMC)-expressing neurons in the arcuate nucleus of the hypothalamus represent key regulators of metabolic homeostasis. Electrophysiological and single-cell sequencing experiments have revealed a remarkable degree of heterogeneity of these neurons. However, the exact molecular basis and functional consequences of this heterogeneity have not yet been addressed. Here, we have developed new mouse models in which intersectional Cre/Dre-dependent recombination allowed for successful labeling, translational profiling and functional characterization of distinct POMC neurons expressing the leptin receptor (Lepr) and glucagon like peptide 1 receptor (Glp1r). Our experiments reveal that POMCLepr+ and POMCGlp1r+ neurons represent largely nonoverlapping subpopulations with distinct basic electrophysiological properties. They exhibit a specific anatomical distribution within the arcuate nucleus and differentially express receptors for energy-state communicating hormones and neurotransmitters. Finally, we identify a differential ability of these subpopulations to suppress feeding. Collectively, we reveal a notably distinct functional microarchitecture of critical metabolism-regulatory neurons.
Brain Struct Funct. 2018 Oct 20.
Gasparini S, Resch JM, Narayan SV, Peltekian L, Iverson GN, Karthik S, Geerling JC.
PMID: 30343334 | DOI: 10.1007/s00429-018-1778-y
Sodium deficiency elevates aldosterone, which in addition to epithelial tissues acts on the brain to promote dysphoric symptoms and salt intake. Aldosterone boosts the activity of neurons that express 11-beta-hydroxysteroid dehydrogenase type 2 (HSD2), a hallmark of aldosterone-sensitive cells. To better characterize these neurons, we combine immunolabeling and in situ hybridization with fate mapping and Cre-conditional axon tracing in mice. Many cells throughout the brain have a developmental history of Hsd11b2 expression, but in the adult brain one small brainstem region with a leaky blood-brain barrier contains HSD2 neurons. These neurons express Hsd11b2, Nr3c2 (mineralocorticoid receptor), Agtr1a (angiotensin receptor), Slc17a6 (vesicular glutamate transporter 2), Phox2b, and Nxph4; many also express Cartpt or Lmx1b. No HSD2 neurons express cholinergic, monoaminergic, or several other neuropeptidergic markers. Their axons project to the parabrachial complex (PB), where they intermingle with AgRP-immunoreactive axons to form dense terminal fields overlapping FoxP2 neurons in the central lateral subnucleus (PBcL) and pre-locus coeruleus (pLC). Their axons also extend to the forebrain, intermingling with AgRP- and CGRP-immunoreactive axons to form dense terminals surrounding GABAergic neurons in the ventrolateral bed nucleus of the stria terminalis (BSTvL). Sparse axons target the periaqueductal gray, ventral tegmental area, lateral hypothalamic area, paraventricular hypothalamic nucleus, and central nucleus of the amygdala. Dual retrograde tracing revealed that largely separate HSD2 neurons project to pLC/PB or BSTvL. This projection pattern raises the possibility that a subset of HSD2 neurons promotes the dysphoric, anorexic, and anhedonic symptoms of hyperaldosteronism via AgRP-inhibited relay neurons in PB.
Eur J Neurosci. 2018 Oct 11.
Rubio FJ, Quintana-Feliciano R, Warren BL, Li X, Witonsky KFR, Soto Del Valle F, Selvam PV, Caprioli D, Venniro M, Bossert JM, Shaham Y, Hope BT.
PMID: 30307667 | DOI: 10.1111/ejn.14203
Many preclinical studies examined cue-induced relapse to heroin and cocaine seeking in animal models, but most of these studies examined only one drug at a time. In human addicts, however, polydrug use of cocaine and heroin is common. We used a polydrug self-administration relapse model in rats to determine similarities and differences in brain areas activated during cue-induced reinstatement of heroin and cocaine seeking. We trained rats to lever press for cocaine (1.0 mg/kg/infusion, 3-h/d, 18 d) or heroin (0.03 mg/kg/infusion) on alternating days (9 d for each drug); drug infusions were paired with either intermittent or continuous light cue. Next, the rats underwent extinction training followed by tests for cue-induced reinstatement where they were exposed to either heroin- or cocaine-associated cues. We observed cue-selective reinstatement of drug seeking: the heroin cue selectively reinstated heroin seeking and the cocaine cue selectively reinstated cocaine seeking. We used Fos immunohistochemistry to assess cue-induced neuronal activation in different subregions of the medial prefrontal cortex (mPFC), dorsal striatum (DS), nucleus accumbens (NAc), and amygdala. Fos expression results indicated that only the prelimbic cortex (PL) was activated by both heroin and cocaine cues; in contrast, no significant cue-induced neuronal activation was observed in other brain areas. RNA in situ hybridization indicated that the proportion of glutamatergic and GABAergic markers in PL Fos-expressing cells were similar for the heroin and cocaine cue-activated neurons. Overall the results indicate that PL may be a common brain area involved in both heroin and cocaine seeking during polydrug use.
Liu, X;Wang, Y;Zeng, Y;Wang, D;Wen, Y;Fan, L;He, Y;Zhang, J;Sun, W;Liu, Y;Tao, A;
PMID: 36876522 | DOI: 10.1111/all.15699
Spinal astrocytes contribute to chronic itch via sensitization of itch-specific neurons expressing gastrin-releasing peptide receptor (GRPR). However, whether microglia-neuron interactions contribute to itch remains unclear. In this study, we aimed to explore how microglia interact with GRPR+ neurons and promote chronic itch.RNA sequencing, quantitative real-time PCR, western blot, immunohistochemistry, RNAscope ISH, pharmacologic and genetic approaches were performed to examine the roles of spinal NLRP3 (The NOD-like receptor family, pyrin-containing domain 3) inflammasome activation and IL-1β-IL1R1 signaling in chronic itch. Grpr-eGFP and Grpr KO mice were used to investigate microglia-GRPR+ neuron interactions.We observed NLRP3 inflammasome activation and IL-1β production in spinal microglia under chronic itch conditions. Blockade of microglial activation and the NLRP3/caspase-1/IL-1β axis attenuated chronic itch and neuronal activation. Type 1 IL-1 receptor (IL-1R1) was expressed in GRPR+ neurons, which are essential for the development of chronic itch. Our studies also find that IL-1β+ microglia are localized in close proximity to GRPR+ neurons. Consistently, intrathecal injection of IL1R1 antagonist or exogenous IL-1β indicate that the IL-1β-IL-1R1 signaling pathway enhanced the activation of GRPR+ neurons. Furthermore, our results demonstrate that the microglial NLRP3/caspase-1/IL-1β axis contributes to several different chronic itches triggered by small molecules and protein allergens from the environment and drugs.Our findings reveal a previously unknown mechanism in which microglia enhances the activation of GRPR+ neurons through the NLRP3/caspase-1/IL-1β/IL1R1 axis. These results will provide new insights into the pathophysiology of pruritus and novel therapeutic strategies for patients with chronic itch.