Albert-Gascó H, Ma S, Ros-Bernal F, Sánchez-Pérez AM, Gundlach AL, Olucha-Bordonau FE.
PMID: - | DOI: 10.3389/fnana.2017.00133
The medial septum (MS) complex modulates hippocampal function and related behaviors. Septohippocampal projections promote and control different forms of hippocampal synchronization. Specifically, GABAergic and cholinergic projections targeting the hippocampal formation from the MS provide bursting discharges to promote theta rhythm, or tonic activity to promote gamma oscillations. In turn, the MS is targeted by ascending projections from the hypothalamus and brainstem. One of these projections arises from the nucleus incertus in the pontine tegmentum, which contains GABA neurons that co-express the neuropeptide relaxin-3 (Rln3). Both stimulation of the nucleus incertus and septal infusion of Rln3 receptor agonist peptides promotes hippocampal theta rhythm. The Gi/o-protein-coupled receptor, relaxin-family peptide receptor 3 (RXFP3), is the cognate receptor for Rln3 and identification of the transmitter phenotype of neurons expressing RXFP3 in the septohippocampal system can provide further insights into the role of Rln3 transmission in the promotion of septohippocampal theta rhythm. Therefore, we used RNAscope multiplex in situ hybridization to characterize the septal neurons expressing Rxfp3mRNA in the rat. Our results demonstrate that Rxfp3 mRNA is abundantly expressed in vesicular GABA transporter (vGAT) mRNA- and parvalbumin (PV) mRNA-positive GABA neurons in MS, whereas ChATmRNA-positive acetylcholine neurons lack Rxfp3 mRNA. Approximately 75% of Rxfp3 mRNA-positive neurons expressed vGAT mRNA (and 22% were PV mRNA-positive), while the remaining 25% expressed Rxfp3 mRNA only, consistent with a potential glutamatergic phenotype. Similar proportions were observed in the posterior septum. The occurrence of RXFP3 in PV-positive GABAergic neurons gives support to a role for the Rln3-RXFP3 system in septohippocampal theta rhythm.
The Journal of neuroscience : the official journal of the Society for Neuroscience
Ambler, M;Hitrec, T;Wilson, A;Cerri, M;Pickering, A;
PMID: 35440490 | DOI: 10.1523/JNEUROSCI.2102-21.2022
Torpor is a naturally occurring, hypometabolic, hypothermic state engaged by a wide range of animals in response to imbalance between the supply and demand for nutrients. Recent work has identified some of the key neuronal populations involved in daily torpor induction in mice, in particular projections from the preoptic area of the hypothalamus (POA) to the dorsomedial hypothalamus (DMH). The DMH plays a role in thermoregulation, control of energy expenditure, and circadian rhythms, making it well positioned to contribute to the expression of torpor. We used activity dependent genetic TRAPing techniques to target DMH neurons that were active during natural torpor bouts in female mice. Chemogenetic reactivation of torpor-TRAPed DMH neurons in calorie-restricted mice promoted torpor, resulting in longer and deeper torpor bouts. Chemogenetic inhibition of torpor-TRAPed DMH neurons did not block torpor entry, suggesting a modulatory role for the DMH in the control of torpor. This work adds to the evidence that the POA and the DMH form part of a circuit within the mouse hypothalamus that controls entry into daily torpor.SIGNIFICANCEDaily heterotherms such as mice employ torpor to cope with environments in which the supply of metabolic fuel is not sufficient for the maintenance of normothermia. Daily torpor involves reductions in body temperature, as well as active suppression of heart rate and metabolism. How the central nervous system controls this profound deviation from normal homeostasis is not known, but a projection from the preoptic area to the dorsomedial hypothalamus has recently been implicated. We demonstrate that the dorsomedial hypothalamus contains neurons that are active during torpor. Activity in these neurons promotes torpor entry and maintenance, but their activation alone does not appear to be sufficient for torpor entry.
Cannabidiol produces distinct U-shaped dose-response effects on cocaine conditioned place preference and associated recruitment of prelimbic neurons in male rats
Biological Psychiatry Global Open Science
Nedelescu, H;Wagner, G;De Ness, G;Carrol, A;Kerr, T;Wang, J;Zhang, S;Chang, S;Than, A;Emerson, N;Suto, N;Weiss, F;
| DOI: 10.1016/j.bpsgos.2021.06.014
Background Cannabidiol (CBD) has received attention for the treatment of Substance Use Disorders. In preclinical models of relapse, CBD attenuates drug seeking across several drugs of abuse, including cocaine. However, in these models, CBD has not been consistently effective. This inconsistency in CBD effects may be related to presently insufficient information on the full spectrum of CBD dose effects on drug-related behaviors. Methods We address this issue by establishing a full dose-response profile of CBD’s actions using expression of cocaine-induced conditioned place preference (CPP) as a model for drug motivated behavior in male rats, and by concurrently identifying dose-dependent effects of CBD on underlying neuronal activation as well as distinct neuronal phenotypes showing dose-dependent activation changes. Additionally, CBD levels in plasma and brain were established. Results CBD produced linear increases in CBD brain/plasma concentrations but suppressed CPP in a distinct U-shaped manner. In parallel with its behavioral effects, CBD produced U-shaped suppressant effects on neuronal activation in the prelimbic but not infralimbic cortex or nucleus accumbens core and shell. RNAscope in situ hybridization identified suppression of glutamatergic and GABAergic signaling in the prelimbic cortex as a possible cellular mechanism for the attenuation of cocaine CPP by CBD. Conclusions The findings extend previous evidence on the potential of CBD in preventing drug motivated behavior. However, CBD’s dose-response profile may have important dosing implications for future clinical applications and may contribute to the understanding of discrepant CBD effects on drug seeking in the literature.
The Journal of comparative neurology
Talluri, B;Hoelzel, F;Medda, BK;Terashvili, M;Sanvanson, P;Shaker, R;Banerjee, A;Sengupta, JN;Banerjee, B;
PMID: 34628661 | DOI: 10.1002/cne.25260
The neurons in the rostral ventromedial medulla (RVM) play a major role in pain modulation. We have previously shown that early-life noxious bladder stimuli in rats resulted in an overall spinal GABAergic disinhibition and a long-lasting bladder/colon sensitization when tested in adulthood. However, the neuromolecular alterations within RVM neurons in the pathophysiology of early life bladder inflammation have not been elucidated. In this study, we have identified and characterized RVM neurons that are synaptically linked to the bladder and colon and examined the effect of neonatal bladder inflammation on molecular expressions of these neurons. A transient bladder inflammation was induced by intravesicular instillation of protamine sulfate and zymosan during postnatal days 14 through 16 (P14-16) followed by pseudorabies virus PRV-152 and PRV-614 injections into the bladder and colon, respectively, on postnatal day P60. Tissues were examined 96 hours post-inoculation for serotonergic, GABAergic, and enkephalinergic expressions using In situ Hybridization and/or Immunohistochemistry techniques. The results revealed that >50% of RVM neurons that are synaptically connected to the bladder (i.e., PRV-152+) were GABAergic, 40% enkephalinergic, and about 14% expressing serotonergic marker TpH2. Neonatal cystitis resulted in a significant increase in converging neurons in RVM receiving dual synaptic inputs from the bladder and colon. In addition, neonatal cystitis significantly downregulated GABA transporter VGAT with a concomitant increase in TpH2 expression in bladder-linked RVM neurons suggesting an alteration in supraspinal signaling. These alterations of synaptic connectivity and GABAergic/serotonergic expressions in RVM neurons may contribute to bladder pain modulation and cross-organ visceral sensitivity. This article is protected by
Haidar M, Tin K, Zhang C, Nategh M, Covita J, Wykes AD, Rogers J and Gundlach AL
PMID: 30906254 | DOI: 10.3389/fnana.2019.00030
Relaxin-3 is a highly conserved neuropeptide abundantly expressed in neurons of the nucleus incertus (NI), which project to nodes of the septohippocampal system (SHS) including the medial septum/diagonal band of Broca (MS/DB) and dorsal hippocampus, as well as to limbic circuits. High densities of the Gi/o-protein-coupled receptor for relaxin-3, known as relaxin-family peptide-3 receptor (RXFP3) are expressed throughout the SHS, further suggesting a role for relaxin-3/RXFP3 signaling in modulating learning and memory processes that occur within these networks. Therefore, this study sought to gain further anatomical and functional insights into relaxin-3/RXFP3 signaling in the mouse MS/DB. Using Cre/LoxP recombination methods, we assessed locomotion, exploratory behavior, and spatial learning and long-term reference memory in adult C57BL/6J Rxfp3 (loxP/loxP) mice with targeted depletion of Rxfp3 in the MS/DB. Following prior injection of an AAV((1/2))-Cre-IRES-eGFP vector into the MS/DB to delete/deplete Rxfp3 mRNA/RXFP3 protein, mice tested in a Morris water maze (MWM) displayed an impairment in allocentric spatial learning during acquisition, as well as an impairment in long-term reference memory on probe day. However, RXFP3-depleted and control mice displayed similar motor activity in a locomotor cell and exploratory behavior in a large open-field (LOF) test. A quantitative characterization using multiplex, fluorescent in situ hybridization (ISH) identified a high level of co-localization of Rxfp3 mRNA and vesicular GABA transporter (vGAT) mRNA in MS and DB neurons (~87% and ~95% co-expression, respectively). Rxfp3 mRNA was also detected, to a correspondingly lesser extent, in vesicular glutamate transporter 2 (vGlut2) mRNA-containing neurons in MS and DB (~13% and ~5% co-expression, respectively). Similarly, a qualitative assessment of the MS/DB region, identified Rxfp3 mRNA in neurons that expressed parvalbumin (PV) mRNA (reflecting hippocampally-projecting GABA neurons), whereas choline acetyltransferase mRNA-positive (acetylcholine) neurons lacked Rxfp3 mRNA. These data are consistent with a qualitative immunohistochemical analysis that revealed relaxin-3-immunoreactive nerve fibers in close apposition with PV-immunoreactive neurons in the MS/DB. Together these studies suggest relaxin-3/RXFP3 signaling in the MS/DB plays a role in modulating specific learning and long-term memory associated behaviors in adult mice via effects on GABAergic neuron populations known for their involvement in modulating hippocampal theta rhythm and associated cognitive processes.
The Journal of neuroscience : the official journal of the Society for Neuroscience
Prokofeva, K;Saito, YC;Niwa, Y;Mizuno, S;Takahashi, S;Hirano, A;Sakurai, T;
PMID: 37117013 | DOI: 10.1523/JNEUROSCI.1913-22.2023
To understand how sleep-wakefulness cycles are regulated, it is essential to disentangle structural and functional relationships between the preoptic area (POA) and lateral hypothalamic area (LHA), since these regions play important yet opposing roles in the sleep-wakefulness regulation. GABA- and galanin (GAL)-producing neurons in the ventrolateral preoptic nucleus (VLPO) of the POA (VLPOGABA and VLPOGAL neurons) are responsible for the maintenance of sleep, while the LHA contains orexin-producing neurons (orexin neurons) that are crucial for maintenance of wakefulness. Through the use of rabies virus-mediated neural tracing combined with in situ hybridization (ISH) in male and female orexin-iCre mice, we revealed that the vesicular GABA transporter (Vgat, Slc32a1)- and galanin (Gal)-expressing neurons in the VLPO directly synapse with orexin neurons in the LHA. A majority (56.3 ± 8.1%) of all VLPO input neurons connecting to orexin neurons were double-positive for Vgat and Gal Using projection-specific rabies virus-mediated tracing in male and female Vgat-ires-Cre and Gal-Cre mice, we discovered that VLPOGABA and VLPOGAL neurons that send projections to the LHA received innervations from similarly distributed input neurons in many brain regions, with the POA and LHA being among the main upstream areas. Additionally, we found that acute optogenetic excitation of axons of VLPOGABA neurons, but not VLPOGAL neurons, in the LHA of male Vgat-ires-Cre mice induced wakefulness. This study deciphers the connectivity between the VLPO and LHA, provides a large-scale map of upstream neuronal populations of VLPO→LHA neurons, and reveals a previously uncovered function of the VLPOGABA→LHA pathway in the regulation of sleep and wakefulness.SIGNIFICANCE STATEMENT We identified neurons in the ventrolateral preoptic nucleus (VLPO) that are positive for vesicular GABA transporter (Vgat) and/or galanin (Gal) and serve as presynaptic partners of orexin-producing neurons in the lateral hypothalamic area (LHA). We depicted monosynaptic input neurons of GABA- and galanin-producing neurons in the VLPO that send projections to the LHA throughout the entire brain. Their input neurons largely overlap, suggesting that they comprise a common neuronal population. However, acute excitatory optogenetic manipulation of the VLPOGABA→LHA pathway, but not the VLPOGAL→LHA pathway, evoked wakefulness. This study shows the connectivity of major components of the sleep/wake circuitry in the hypothalamus and unveils a previously unrecognized function of the VLPOGABA→LHA pathway in sleep-wakefulness regulation. Furthermore, we suggest the existence of subpopulations of VLPOGABA neurons that innervate LHA.