Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
Yang, H;Almadani, N;Thompson, EF;Tessier-Cloutier, B;Chen, J;Ho, J;Senz, J;McConechy, MK;Chow, C;Ta, M;Cheng, A;Karnezis, A;Huvila, J;McAlpine, JN;Gilks, B;Jamieson, A;Hoang, LN;
PMID: 36828360 | DOI: 10.1016/j.modpat.2023.100145
There is emerging evidence that vulvar squamous cell carcinoma (VSCC) can be prognostically subclassified into 3 groups based on human papillomavirus (HPV) and p53 status: HPV-associated (HPV+), HPV-independent/p53 wild-type (HPV-/p53wt), or HPV-independent/p53 abnormal (HPV-/p53abn). Our goal was to assess the feasibility of separating VSCC and its precursors into these 3 groups using p16 and p53 immunohistochemistry (IHC). A tissue microarray (TMA) containing 225 VSCC, 43 usual vulvar intraepithelial neoplasia (uVIN/HSIL), 10 verruciform acanthotic vulvar intraepithelial neoplasia (vaVIN), and 34 differentiated VIN (dVIN), was stained for p16 and p53. Non-complementary p16 and p53 patterns were resolved by repeating p53 IHC and HPV RNA in-situ hybridization (ISH) on whole sections, and sequencing for TP53. Of 82 p16-positive VSCC, 73 (89%) had complementary p16 and p53 patterns and were classified into the HPV+ group, 4 (4.9%) had wild-type p53 staining, positive HPV ISH, and were classified into the HPV+ group, while 5 (6.1%) had p53 abnormal IHC patterns (1 null, 4 overexpression), negativity for HPV ISH and harboured TP53 mutations (1 splice-site, 4 missense); they were classified as HPV-/p53abn. Of 143 p16-negative VSCC, 142 (99.3%) had complementary p53 and p16 patterns; 115 (80.4%) HPV-/p53abn and 27 (18.9%) HPV-/p53wt. One had a basal-sparing p53 pattern, positivity for HPV ISH, and was negative for TP53 mutations; it was classified into the HPV+ category. The use of IHC also led to the following revised diagnoses: HSIL to dVIN (3/43), dVIN to vaVIN (8/34), and dVIN to HSIL (3/34). Overall, 215/225 VSCC (95.6%) could be easily classifiable into 3 groups with p16 and p53 IHC. We identified several caveats, with the major caveat being that 'double positive' p16/p53 should be classified as HPV-/p53abn, and propose an algorithm which will facilitate the application of p16 and p53 IHC to classify VSCC in pathology practice.
Xing, J;Chen, K;Gao, S;Pousse, M;Ying, Y;Wang, B;Chen, L;Wang, C;Wang, L;Hu, W;Lu, Y;Gilson, E;Ye, J;
PMID: 36644807 | DOI: 10.1111/acel.13780
The contribution of cellular senescence to the behavioral changes observed in the elderly remains elusive. Here, we observed that aging is associated with a decline in protein phosphatase 2A (PP2A) activity in the brains of zebrafish and mice. Moreover, drugs activating PP2A reversed age-related behavioral changes. We developed a transgenic zebrafish model to decrease PP2A activity in the brain through knockout of the ppp2r2c gene encoding a regulatory subunit of PP2A. Mutant fish exhibited the behavioral phenotype observed in old animals and premature accumulation of neural cells positive for markers of cellular senescence, including senescence-associated β-galactosidase, elevated levels cdkn2a/b, cdkn1a, senescence-associated secretory phenotype gene expression, and an increased level of DNA damage signaling. The behavioral and cell senescence phenotypes were reversed in mutant fish through treatment with the senolytic ABT263 or diverse PP2A activators as well as through cdkn1a or tp53 gene ablation. Senomorphic function of PP2A activators was demonstrated in mouse primary neural cells with downregulated Ppp2r2c. We conclude that PP2A reduction leads to neural cell senescence thereby contributing to age-related behavioral changes and that PP2A activators have senotherapeutic properties against deleterious behavioral effects of brain aging.
Abstract LB190: DNAscopeTM: A novel chromogenic in-situ hybridization technology for high-resolution detection of DNA copy number and structural variations
Molecular and Cellular Biology/Genetics
Wang, L;Tondnevis, F;Todorov, C;Gaspar, J;Sahajan, A;Murlidhar, V;Zhang, B;Ma, X;
| DOI: 10.1158/1538-7445.am2021-lb190
Genomic DNA anomalies such as copy number variations (gene duplication, amplification, deletion) and gene rearrangements are important biomarkers and drug targets in many cancer types. DNA in-situ hybridization (ISH) is the gold standard method to directly visualize these molecular alterations in formalin-fixed paraffin-embedded (FFPE) tumor tissues at single-cell resolution within a histological section. However, currently available fluorescent ISH (FISH) assays provide limited morphological detail due to the use of fluorescent nuclear staining compared to chromogenic staining. Furthermore, FISH techniques rely on expensive fluorescence microscopes, risk loss of fluorescent signal over time and involve tedious imaging at high magnifications (100X). There is thus an unmet need for a sensitive and robust chromogenic DNA-ISH assay that can enable high-resolution detection of genomic DNA targets with the ease of bright-field microscopy. We present here DNAscope - a novel chromogenic DNA-ISH assay - for detecting and visualizing genomic DNA targets under a standard light microscope. DNAscope is based on the widely used RNAscope double-Z probe design and signal amplification technology and provides unparalleled sensitivity and specificity with large signal dots readily visualized at 40X magnification and with full morphological context. Furthermore, DNAscope ensures specific DNA detection without interference from RNA due to the use of a novel RNA removal method. Using a duplex chromogenic detection assay in red and blue, we demonstrate highly specific and efficient detection of gene rearrangements (ALK, ROS1, RET and NTRK1), gene amplification (ERBB2, EGFR, MET) and deletion (TP53 and CDKN2A). The DNAscope assay has been carefully optimized for probe signal size and color contrast to enable easy interpretation of signal patterns under conventional light microscopy or digital pathology. Compared to conventional FISH assays, DNAscope probes are standard oligos that are designed in silico to be free of any repetitive sequences and can be rapidly synthesized for any DNA target. In conclusion, the DNAscope assay provides a powerful and convenient alternative to commonly used FISH assays in many cancer research applications.