Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for TGFB2

ACD can configure probes for the various manual and automated assays for TGFB2 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for TGFB2 (416)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (8)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TGFB2 (6) Apply TGFB2 filter
  • TGFB1 (2) Apply TGFB1 filter
  • Tgfb3 (2) Apply Tgfb3 filter
  • TBD (2) Apply TBD filter
  • ITGB6 (1) Apply ITGB6 filter
  • Wnt9b (1) Apply Wnt9b filter
  • HBV (1) Apply HBV filter
  • p15 (1) Apply p15 filter

Product

  • RNAscope Multiplex Fluorescent Assay (2) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.0 Assay (1) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Brown Assay (1) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope Fluorescent Multiplex Assay (1) Apply RNAscope Fluorescent Multiplex Assay filter

Research area

  • Other (2) Apply Other filter
  • Developmental (1) Apply Developmental filter
  • idiopathic pulmonary fibrosis (1) Apply idiopathic pulmonary fibrosis filter
  • Infectious Disease (1) Apply Infectious Disease filter
  • Injury (1) Apply Injury filter
  • Other: Cell Biology (1) Apply Other: Cell Biology filter
  • Other: Lung (1) Apply Other: Lung filter
  • Regeneration (1) Apply Regeneration filter

Category

  • Publications (8) Apply Publications filter
Correlation of tgfb2 mRNA expression to disease progression in a time course of chronic biliary liver disease

37. Jahrestagung der Deutschen Arbeitsgemeinschaft zum Studium der Leber

2021 Jan 01

Albin, J;Meindl-Beinker, N;Ebert, M;Teufel, A;Dooley, S;Dropmann, A;
| DOI: 10.1055/s-0040-1721973

Question To identify the cellular source of TgfB2 in a time course of cholestatic liver disease using Abcb4-KO mice and PSC patients, and to correlate findings to disease stages. Methods Liver samples from PSC liver biopsies and Abcb4-KO mice at the age of 2-, 6-, 8- and 12-months were stained for HE, Sirius Red and Orcein to visualize inflammation and fibrosis. Morphological evaluation was performed using Ishak and Nakanuma scoring systems. Tgfb2 mRNA expression was analysed by in situ hybridisation using the RNAscope technique and then compared to age matched wildtype Balb/c mice and disease-free human liver as well as PSC samples. Results In Abcb4-KO tissues, we found an increase in grade and stage of fibrosis and inflammation with advancing disease progression using both scoring systems in comparison to wild type mice. Disease progression was faster in female than in male mice, especially with regard to inflammation. Subscores, e.g. portal tract inflammation and interface hepatitis increased first, while confluent necrosis occurred not before the age of 12 months. Tgfb2 mRNA was expressed in areas of proliferating bile ducts and fibrotically rearranged tissue at all stages of cholestatic disease. Both murine and human livers showing higher Ishak and Nakanuma scores also showed stronger tgfb2 expression, particularly in samples with a high grade of portal inflammation. We are currently performing costaining with cell type/cell fate markers to specifically identify the cell type that upregulates TGFb2 expression. Conclusions The expression of tgfb2 mRNA increased with disease progression of Abcb4-KO mice, whereby prominent inflammatory grades present with the highest expression levels in mice and human.
Myocardial TGFβ2 Is Required for Atrioventricular Cushion Remodeling and Myocardial Development

Journal of Cardiovascular Development and Disease

2021 Mar 02

Bhattacharya, A;Al-Sammarraie, N;Gebere, M;Johnson, J;Eberth, J;Azhar, M;
| DOI: 10.3390/jcdd8030026

Among the three transforming growth factor beta (TGFβ) ligands, TGFβ2 is essential for heart development and is produced by multiple cell types, including myocardium. Heterozygous mutations in TGFB2 in patients of connective tissue disorders result in congenital heart defects and adult valve malformations, including mitral valve prolapse (MVP) with or without regurgitation. Tgfb2 germline knockout fetuses exhibit multiple cardiac defects but the role of myocardial-TGFβ2 in heart development is yet to be elucidated. Here, myocardial Tgfb2 conditional knockout (CKO) embryos were generated by crossing Tgfb2flox mice with Tgfb2+/−; cTntCre mice. Tgfb2flox/− embryos were normal, viable. Cell fate mapping was done using dual-fluorescent mT/mG+/− mice. Cre-mediated Tgfb2 deletion was assessed by genomic PCR. RNAscope in situ hybridization was used to detect the loss of myocardial Tgfb2 expression. Histological, morphometric, immunohistochemical, and in situ hybridization analyses of CKOs and littermate controls at different stages of heart development (E12.5–E18.5) were used to determine the role of myocardium-derived TGFβ2 in atrioventricular (AV) cushion remodeling and myocardial development. CKOs exhibit a thin ventricular myocardium, AV cushion remodeling defects and developed incomplete AV septation defects. The loss of myocardial Tgfb2 resulted in impaired cushion maturation and dysregulated cell death. Phosphorylated SMAD2, a surrogate for TGFβ signaling, was “paradoxically” increased in both AV cushion mesenchyme and ventricular myocardium in the CKOs. Our results indicate that TGFβ2 produced by cardiomyocytes acting as cells autonomously on myocardium and via paracrine signaling on AV cushions are required for heart development.
Single cell RNA sequencing identifies TGFβ as a key regenerative cue following LPS-induced lung injury.

JCI Insight.

2019 Mar 26

Riemondy KA, Jansing NL, Jiang P, Redente EF, Gillen AE, Fu R, Miller AJ, Spence JR, Gerber AN, Hesselberth JR, Zemans RL.
PMID: 30913038 | DOI: 10.1172/jci.insight.123637

Many lung diseases result from a failure of efficient regeneration of damaged alveolar epithelial cells (AECs) after lung injury. During regeneration, AEC2s proliferate to replace lost cells, after which proliferation halts and some AEC2s transdifferentiate into AEC1s to restore normal alveolar structure and function. Although the mechanisms underlying AEC2 proliferation have been studied, the mechanisms responsible for halting proliferation and inducing transdifferentiation are poorly understood. To identify candidate signaling pathways responsible for halting proliferation and inducing transdifferentiation, we performed single cell RNA sequencing on AEC2s during regeneration in a murine model of lung injury induced by intratracheal LPS. Unsupervised clustering revealed distinct subpopulations of regenerating AEC2s: proliferating, cell cycle arrest, and transdifferentiating. Gene expression analysis of these transitional subpopulations revealed that TGFβ signaling was highly upregulated in the cell cycle arrest subpopulation and relatively downregulated in transdifferentiating cells. In cultured AEC2s, TGFβ was necessary for cell cycle arrest but impeded transdifferentiation. We conclude that during regeneration after LPS-induced lung injury, TGFβ is a critical signal halting AEC2 proliferation but must be inactivated to allow transdifferentiation. This study provides insight into the molecular mechanisms regulating alveolar regeneration and the pathogenesis of diseases resulting from a failure of regeneration.

The molecular anatomy of mammalian upper lip and primary palate fusion at single cell resolution.

Development

2019 May 22

Li H, Jones KL, Hooper JE, Williams T.
PMID: 31118233 | DOI: 10.1242/dev.174888

The mammalian lip and primary palate form when coordinated growth and morphogenesis bring the nasal and maxillary processes into contact, and the epithelia co-mingle, remodel and clear from the fusion site to allow mesenchyme continuity. Although several genes required for fusion have been identified, an integrated molecular and cellular description of the overall process is lacking. Here, we employ single cell RNA sequencing of the developing mouse face to identify ectodermal, mesenchymal and endothelial populations associated with patterning and fusion of the facial prominences. This analysis indicates that key cell populations at the fusion site exist within the periderm, basal epithelial cells and adjacent mesenchyme. We describe the expression profiles that make each population unique, and the signals that potentially integrate their behaviour. Overall, these data provide a comprehensive high-resolution description of the various cell populations participating in fusion of the lip and primary palate, as well as formation of the nasolacrimal groove, and they furnish a powerful resource for those investigating the molecular genetics of facial development and facial clefting that can be mined for crucial mechanistic information concerning this prevalent human birth defect

TGFB1 Induces Fetal Reprogramming and Enhances Intestinal Regeneration

bioRxiv : the preprint server for biology

2023 Jan 13

Chen, L;Dupre, A;Qiu, X;Pellon-Cardenas, O;Walton, KD;Wang, J;Perekatt, AO;Hu, W;Spence, JR;Verzi, MP;
PMID: 36711781 | DOI: 10.1101/2023.01.13.523825

The adult gut epithelium has a remarkable ability to recover from damage. To achieve cellular therapies aimed at restoring and/or replacing defective gastrointestinal tissue, it is important to understand the natural mechanisms of tissue regeneration. We employed a combination of high throughput sequencing approaches, mouse genetic models, and murine and human organoid models, and identified a role for TGFB signaling during intestinal regeneration following injury. At 2 days following irradiation (IR)-induced damage of intestinal crypts, a surge in TGFB1 expression is mediated by monocyte/macrophage cells at the location of damage. Depletion of macrophages or genetic disruption of TGFB-signaling significantly impaired the regenerative response following irradiation. Murine intestinal regeneration is also characterized by a process where a fetal transcriptional signature is induced during repair. In organoid culture, TGFB1-treatment was necessary and sufficient to induce a transcriptomic shift to the fetal-like/regenerative state. The regenerative response was enhanced by the function of mesenchymal cells, which are also primed for regeneration by TGFB1. Mechanistically, integration of ATAC-seq, scRNA-seq, and ChIP-seq suggest that a regenerative YAP-SOX9 transcriptional circuit is activated in epithelium exposed to TGFB1. Finally, pre-treatment with TGFB1 enhanced the ability of primary epithelial cultures to engraft into damaged murine colon, suggesting promise for the application of the TGFB-induced regenerative circuit in cellular therapy.
The UIP/IPF fibroblastic focus is a collagen biosynthesis factory embedded in a distinct extracellular matrix

JCI insight

2022 Jul 19

Herrera, JA;Dingle, LA;Montero Fernandez, MA;Venkateswaran, RV;Blaikley, JF;Lawless, C;Schwartz, MA;
PMID: 35852874 | DOI: 10.1172/jci.insight.156115

Usual Interstitial Pneumonia (UIP) is a histological pattern characteristic of Idiopathic Pulmonary Fibrosis (IPF). The UIP pattern is patchy with histologically normal lung adjacent to dense fibrotic tissue. At this interface, fibroblastic foci (FF) are present and are sites where myofibroblasts and extracellular matrix (ECM) accumulate. Utilizing laser capture microdissection coupled mass spectrometry (LCM-MS), we interrogated the FF, adjacent mature scar, and adjacent alveoli in 6 fibrotic (UIP/IPF) specimens plus 6 non-fibrotic alveolar specimens as controls. The data were subject to qualitative and quantitative analysis, and histologically validated. We found that the fibrotic alveoli protein signature is defined by immune deregulation as the strongest category. The fibrotic mature scar classified as end-stage fibrosis whereas the FF contained an overabundance of a distinctive ECM compared to non-fibrotic control. Furthermore, the FF is positive for both TGFB1 and TGFB3, whereas the aberrant basaloid cell lining of the FF is predominantly positive for TGFB2. In conclusion, spatial proteomics demonstrated distinct protein compositions in the histologically defined regions of UIP/IPF tissue. These data revealed that the FF is the main site of collagen biosynthesis and that the adjacent alveoli are abnormal. This new and essential information will inform future mechanistic studies on fibrosis progression.
Mechanism of Fibrosis in HNF1B-Related Autosomal Dominant Tubulointerstitial Kidney Disease

J Am Soc Nephrol.

2018 Sep 10

Chan SC, Zhang Y, Shao A, Avdulov S, Herrera J, Aboudehen K, Pontoglio M, Igarashi P.
PMID: 30097458 | DOI: 10.1681/ASN.2018040437

Abstract

BACKGROUND:

Mutation of HNF1B, the gene encoding transcription factor HNF-1β, is one cause of autosomal dominant tubulointerstitial kidney disease, a syndrome characterized by tubular cysts, renal fibrosis, and progressive decline in renal function. HNF-1β has also been implicated in epithelial-mesenchymal transition (EMT) pathways, and sustained EMT is associated with tissue fibrosis. The mechanism whereby mutated HNF1B leads to tubulointerstitial fibrosis is not known.

METHODS:

To explore the mechanism of fibrosis, we created HNF-1β-deficient mIMCD3 renal epithelial cells, used RNA-sequencing analysis to reveal differentially expressed genes in wild-type and HNF-1β-deficient mIMCD3 cells, and performed cell lineage analysis in HNF-1β mutant mice.

RESULTS:

The HNF-1β-deficient cells exhibited properties characteristic of mesenchymal cells such as fibroblasts, including spindle-shaped morphology, loss of contact inhibition, and increased cell migration. These cells also showed upregulation of fibrosis and EMT pathways, including upregulation of Twist2, Snail1, Snail2, and Zeb2, which are key EMT transcription factors. Mechanistically, HNF-1β directly represses Twist2, and ablation of Twist2 partially rescued the fibroblastic phenotype of HNF-1β mutant cells. Kidneys from HNF-1β mutant mice showed increased expression of Twist2 and its downstream target Snai2. Cell lineage analysis indicated that HNF-1β mutant epithelial cells do not transdifferentiate into kidney myofibroblasts. Rather, HNF-1β mutant epithelial cells secrete high levels of TGF-β ligands that activate downstream Smad transcription factors in renal interstitial cells.

CONCLUSIONS:

Ablation of HNF-1β in renal epithelial cells leads to the activation of a Twist2-dependent transcriptional network that induces EMT and aberrant TGF-β signaling, resulting in renal fibrosis through a cell-nonautonomous mechanism.

Hepatitis B virus deregulates cell cycle to promote viral replication and a premalignant phenotype.

J Virol.

2018 Jul 18

Xia Y, Cheng X, Li Y, Valdez K, Chen W, Liang TJ.
PMID: 30021897 | DOI: 10.1128/JVI.00722-18

Hepatitis B virus (HBV) infection is a major health problem worldwide and chronically infected individuals are at high risk of developing cirrhosis and hepatocellular carcinoma (HCC). The molecular mechanisms whereby HBV causes HCC are largely unknown. By using a biologically relevant system of HBV infection of primary human hepatocytes (PHHs), we studied how HBV perturbs gene expressions and signaling pathways of infected hepatocytes, and whether these effects are relevant to productive HBV infection and HBV-associated HCC. Using a human growth factor antibody array, we first showed that HBV infection induced a distinct profile of growth factor production by PHHs, marked particularly by significantly lower levels of transforming growth factor (TGF)-β family of proteins in the supernatant. Transcriptome profiling next revealed multiple changes in cell proliferation and cell cycle control pathways in response to HBV infection. A human cell cycle PCR array validated deregulation of more than 20 gene associated with cell cycle in HBV-infected PHHs. Cell cycle analysis demonstrated that HBV-infected PHHs are enriched in the G2/M phase as compared to the predominantly G0/G1 phase of cultured PHHs. HBV proviral host factors, such as PPARA, RXRA and CEBPB, were up-regulated upon HBV infection and particularly enriched in cells at the G2/M phase. Together, these results support that HBV deregulates cell cycle control to render a cellular environment that is favorable for productive HBV infection. By perturbing cell cycle regulation of infected cells, HBV may coincidently induce a premalignant phenotype that predispose infected hepatocytes to subsequent malignant transformation.IMPORTANCE Hepatitis B virus (HBV) infection is a major health problem with high risk of developing hepatocellular carcinoma (HCC). By using a biologically relevant system of HBV infection of primary human hepatocytes (PHHs), we studied how HBV perturbs gene expressions, and whether these effects are relevant to HBV-associated HCC. HBV induced a distinct profile of growth factor production, marked particularly by significantly lower levels of transforming growth factor (TGF)-β family of proteins. Transcriptome profiling revealed multiple changes in cell proliferation and cell cycle control pathways. Cell cycle analysis demonstrated that HBV-infected PHHs are enriched in the G2/M phase. HBV proviral host factors were up-regulated upon infection and particularly enriched in cells at the G2/M phase. Together, these results support that HBV deregulates cell cycle control to render a cellular environment that is favorable for productive infection. This may coincidently induce a premalignant phenotype that predispose infected hepatocytes to subsequent malignant transformation.

X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?