Journal of immunology (Baltimore, Md. : 1950)
Silk, JD;Abbott, RJM;Adams, KJ;Bennett, AD;Brett, S;Cornforth, TV;Crossland, KL;Figueroa, DJ;Jing, J;O'Connor, C;Pachnio, A;Patasic, L;Peredo, CE;Quattrini, A;Quinn, LL;Rust, AG;Saini, M;Sanderson, JP;Steiner, D;Tavano, B;Viswanathan, P;Wiedermann, GE;Wong, R;Jakobsen, BK;Britten, CM;Gerry, AB;Brewer, JE;
PMID: 34853077 | DOI: 10.4049/jimmunol.2001357
Adoptive T cell therapy with T cells expressing affinity-enhanced TCRs has shown promising results in phase 1/2 clinical trials for solid and hematological tumors. However, depth and durability of responses to adoptive T cell therapy can suffer from an inhibitory tumor microenvironment. A common immune-suppressive agent is TGF-β, which is secreted by tumor cells and cells recruited to the tumor. We investigated whether human T cells could be engineered to be resistant to inhibition by TGF-β. Truncating the intracellular signaling domain from TGF-β receptor (TGFβR) II produces a dominant-negative receptor (dnTGFβRII) that dimerizes with endogenous TGFβRI to form a receptor that can bind TGF-β but cannot signal. We previously generated specific peptide enhanced affinity receptor TCRs recognizing the HLA-A*02-restricted peptides New York esophageal squamous cell carcinoma 1 (NY-ESO-1)157-165/l-Ag family member-1A (TCR: GSK3377794, formerly NY-ESO-1c259) and melanoma Ag gene A10254-262 (TCR: ADP-A2M10, formerly melanoma Ag gene A10c796). In this article, we show that exogenous TGF-β inhibited in vitro proliferation and effector functions of human T cells expressing these first-generation high-affinity TCRs, whereas inhibition was reduced or abolished in the case of second-generation TCRs coexpressed with dnTGFβRII (e.g., GSK3845097). TGF-β isoforms and a panel of TGF-β-associated genes are overexpressed in a range of cancer indications in which NY-ESO-1 is commonly expressed, particularly in synovial sarcoma. As an example, immunohistochemistry/RNAscope identified TGF-β-positive cells close to T cells in tumor nests and stroma, which had low frequencies of cells expressing IFN-γ in a non-small cell lung cancer setting. Coexpression of dnTGFβRII may therefore improve the efficacy of TCR-transduced T cells.
Scola, L;Bongiorno, MR;Forte, GI;Aiello, A;Accardi, G;Scrimali, C;Spina, R;Lio, D;Candore, G;
PMID: 35886018 | DOI: 10.3390/genes13071235
Differential genetically determined expression of transforming growth factor-β (TGF-β pathway and of vascular endothelial growth factor-A (VEGF-A) might modulate the molecular "milieu" involved in the etio-pathogenesis of non-melanoma skin cancer (NMSC). We have evaluated the frequency of some functionally relevant SNPs of TGF-β and VEGF-A genes in 70 NMSC patients and 161 healthy controls, typed for TGF-β1 rs1800471, TGF-β2 rs900, TGF-βR1 rs334348 and rs334349, TGF-βR2 rs4522809 and VEGF-A rs3025039 SNPs. TGF-βR2 rs1800629G allele and related genotypes were found to be associated with a possible protective role against NMSC, whereas VEGF-A rs3025039T was associated with an increased risk. To evaluate the effect of genotype combinations on NMSC susceptibility, we determined the frequencies of 31 pseudo-haplotypes due to non-random linkage among alleles of loci not lying on the same chromosome. Two pseudo-haplotypes that imply a minor allele of TGF-βR2 or minor allele of VEGF-A SNPs combined with major alleles of the other SNPs were, respectively, associated with a protective effect, and susceptibility to NMSC. In addition, a pseudo-haplotype involving minor alleles of TGF-β2 rs900, TGF-βR1 rs334348 and rs4522809 SNPs might be a susceptibility marker for NMSC. In conclusion, our data suggest that a complex interplay among the genetic polymorphisms of TGF-β, TGF-β receptors and VEGF-A genes might influence the net effect of genetic background of the patients on NMSC development. This might be relevant in the risk evaluation, diagnosis and treatment of NMSC.
Snail enhances arginine synthesis by inhibiting ubiquitination-mediated degradation of ASS1
Jia, H;Yang, Y;Li, M;Chu, Y;Song, H;Zhang, J;Zhang, D;Zhang, Q;Xu, Y;Wang, J;Xu, H;Zou, X;Peng, H;Hou, Z;
PMID: 34184805 | DOI: 10.15252/embr.202051780
Snail is a dedicated transcriptional repressor and acts as a master inducer of EMT and metastasis, yet the underlying signaling cascades triggered by Snail still remain elusive. Here, we report that Snail promotes colorectal cancer (CRC) migration by preventing non-coding RNA LOC113230-mediated degradation of argininosuccinate synthase 1 (ASS1). LOC113230 is a novel Snail target gene, and Snail binds to the functional E-boxes within its proximal promoter to repress its expression in response to TGF-β induction. Ectopic expression of LOC113230 potently suppresses CRC cell growth, migration, and lung metastasis in xenograft experiments. Mechanistically, LOC113230 acts as a scaffold to facilitate recruiting LRPPRC and the TRAF2 E3 ubiquitin ligase to ASS1, resulting in enhanced ubiquitination and degradation of ASS1 and decreased arginine synthesis. Moreover, elevated ASS1 expression is essential for CRC growth and migration. Collectively, these findings suggest that TGF-β and Snail promote arginine synthesis via inhibiting LOC113230-mediated LRPPRC/TRAF2/ASS1 complex assembly and this complex can serve as potential target for the development of new therapeutic approaches to treat CRC.
Airway basal stem cells reutilize the embryonic proliferation regulator, Tgfβ-Id2 axis, for tissue regeneration
Kiyokawa, H;Yamaoka, A;Matsuoka, C;Tokuhara, T;Abe, T;Morimoto, M;
PMID: 34129836 | DOI: 10.1016/j.devcel.2021.05.016
During development, quiescent airway basal stem cells are derived from proliferative primordial progenitors through the cell-cycle slowdown. In contrast, basal cells contribute to adult tissue regeneration by shifting from slow cycling to proliferating and subsequently back to slow cycling. Although sustained proliferation results in tumorigenesis, the molecular mechanisms regulating these transitions remain unknown. Using temporal single-cell transcriptomics of developing murine airway progenitors and genetic validation experiments, we found that TGF-β signaling decelerated cell cycle by inhibiting Id2 and contributed to slow-cycling basal cell specification during development. In adult tissue regeneration, reduced TGF-β signaling restored Id2 expression and initiated regeneration. Id2 overexpression and Tgfbr2 knockout enhanced epithelial proliferation; however, persistent Id2 expression drove basal cell hyperplasia that resembled a precancerous state. Together, the TGF-β-Id2 axis commonly regulates the proliferation transitions in basal cells during development and regeneration, and its fine-tuning is critical for normal regeneration while avoiding basal cell hyperplasia.
Preliminary RNA-microarray analysis of long non-coding RNA expression in abnormally invasive placenta
Zhang, H;Wu, S;Ye, S;Ma, H;Liu, Z;
PMID: 33235622 | DOI: 10.3892/etm.2020.9445
Long non-coding RNAs (lncRNAs) are reported to have important roles in placental development and function, but the role of lncRNAs in abnormally invasive placenta (AIP) remains elusive. In the present study, the differential expression profiles of lncRNAs were analyzed to identify novel targets for further study of AIP. A total of 10 lncRNAs were chosen for validation by reverse transcription-quantitative PCR. To further determine the functions of dysregulated lncRNAs and their corresponding mRNAs, functional enrichment analysis, coexpression analysis were performed. A total of 329 lncRNAs and 179 mRNAs were identified to be differently expressed between the invasive and control group. Gene ontology analysis revealed that the 10 most significantly enriched functions included upregulated mRNAs and the most significantly enriched term was related to the proteinaceous extracellular matrix (ECM). In the pathway analysis, the two most significantly enriched pathways were the TGF-β signaling pathway for upregulated mRNAs and the pentose phosphate pathway for downregulated mRNAs. Furthermore, for certain dysregulated lncRNAs, their associated mRNAs were also dysregulated. Of note, BMP and activin membrane-bound inhibitor and TGF-β-induced, as the target genes of the TGF-β pathway, were indicated to be closely related to the ECM and invasive placental cells. Their nearby lncRNAs G008916 and vault RNA2-1 were also significantly dysregulated. In conclusion, significant lncRNAs with the potential to serve as biomarkers for AIP were identified.
Jiang H, Liu X, Knolhoff BL, Hegde S, Lee KB, Jiang H, Fields RC, Pachter JA, Lim KH, DeNardo DG.
PMID: 31076405 | DOI: 10.1136/gutjnl-2018-317424
Abstract
OBJECTIVE:
We investigated how pancreatic cancer developed resistance to focal adhesion kinase (FAK) inhibition over time.
DESIGN:
Pancreatic ductal adenocarcinoma (PDAC) tumours from KPC mice (p48-CRE; LSL-KRasG12D/wt; p53flox/wt) treated with FAK inhibitor were analysed for the activation of a compensatory survival pathway in resistant tumours. We identified pathways involved in the regulation of signal transducer and activator of transcription 3 (STAT3) signalling on FAK inhibition by gene set enrichment analysis and verified these outcomes by RNA interference studies. We also tested combinatorial approaches targeting FAK and STAT3 in syngeneic transplantable mouse models of PDAC and KPC mice.
RESULTS:
In KPC mice, the expression levels of phosphorylated STAT3 (pSTAT3) were increased in PDAC cells as they progressed on FAK inhibitor therapy. This progression corresponded to decreased collagen density, lowered numbers of SMA+ fibroblasts and downregulation of the transforming growth factor beta (TGF-β)/SMAD signalling pathway in FAK inhibitor-treated PDAC tumours. Furthermore, TGF-β production by fibroblasts in vitro drives repression of STAT3 signalling and enhanced responsiveness to FAK inhibitor therapy. Knockdown of SMAD3 in pancreatic cancer cells abolished the inhibitory effects of TGF-β on pSTAT3. We further found that tumour-intrinsic STAT3 regulates the durability of the antiproliferative activity of FAK inhibitor, and combinatorial targeting of FAK and Janus kinase/STAT3 act synergistically to suppress pancreatic cancer progression in mouse models.
CONCLUSION:
Stromal depletion by FAK inhibitor therapy leads to eventual treatment resistance through the activation of STAT3 signalling. These data suggest that, similar to tumour-targeted therapies, resistance mechanisms to therapies targeting stromal desmoplasia may be critical to treatment durability.
Am J Respir Crit Care Med.
Savary G, Dewaeles E, Diazzi S, Buscot M, Nottet N, Fassy J, Courcot E, Henaoui IS, Lemaire J, Martis N, Van der Hauwaert C, Pons N, Magnone V, Leroy S, Hofman V, Plantier L, Lebrigand K, Paquet A, Lino Cardenas CL, Vassaux G, Hofman P, Günther A, Crestani B, Wallaert B, Rezzonico R, Brousseau T, Glowacki F, Bellusci S, Perrais M, Broly F, Barbry P, Marquette CH, Cauffiez C, Mari B, Pottier N.
PMID: 30964696 | DOI: 10.1164/rccm.201807-1237OC
Abstract
RATIONALE:
Given the paucity of effective treatments for Idiopathic Pulmonary Fibrosis (IPF), new insights into the deleterious mechanisms controlling lung fibroblast activation, the key cell type driving the fibrogenic process, are essential to develop new therapeutic strategies. Transforming growth factor β (TGF-β) is the main pro-fibrotic factor, but its inhibition is associated with severe side effects due to its pleiotropic role.
OBJECTIVES:
We hypothesized that downstream non-coding effectors of TGF-β in fibroblasts may represent new effective therapeutic targets whose modulation may be well-tolerated.
METHODS:
We investigated the whole non-coding fraction of TGF-β-stimulated lung fibroblast transcriptome to identify new genomic determinants of lung fibroblast differentiation into myofibroblast. Differential expression of the long non-coding RNA DNM3OS and its associated miRNAs was validated in a murine model of pulmonary fibrosis and in IPF tissue samples. Distinct and complementary antisense oligonucleotide-based strategies aiming at interfering with DNM3OS were used to elucidate the role of DNM3OS and its associated miRNAs in IPF pathogenesis.
MEASUREMENTS AND MAIN RESULTS:
We identified DNM3OS as a fibroblast-specific critical downstream effector of TGF-β-induced lung myofibroblast activation. Mechanistically, DNM3OS regulates this process in trans by giving rise to three distinct profibrotic mature miRNAs (i.e. miR-199a-5p/3p and miR-214-3p), which influence both SMAD and non-SMAD components of TGF-β signaling in a multifaceted way. In vivo, we showed that interfering with DNM3OS function not only prevents lung fibrosis but also improves established pulmonary fibrosis.
CONCLUSION:
Pharmacological approaches aiming at interfering with DNM3OS may represent new effective therapeutic strategies in IPF.
The Journal of clinical investigation
Horn, LA;Chariou, PL;Gameiro, SR;Qin, H;Iida, M;Fousek, K;Meyer, TJ;Cam, M;Flies, D;Langermann, S;Schlom, J;Palena, C;
PMID: 35230974 | DOI: 10.1172/JCI155148
Collagens in the extracellular matrix (ECM) provide a physical barrier to tumor immune infiltration, while also acting as a ligand for immune inhibitory receptors. Transforming growth factor-β (TGF-β) is a key contributor to shaping the ECM by stimulating the production and remodeling of collagens. TGF-β-activation signatures and collagen-rich environments have both been associated with T-cell exclusion and lack of responses to immunotherapy. Here we describe the effect of targeting collagens that signal through the inhibitory leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) in combination with blockade of TGF-β and programmed cell death ligand 1 (PD-L1). This approach remodeled the tumor collagenous matrix, enhanced tumor infiltration and activation of CD8+ T cells, and repolarized suppressive macrophage populations resulting in high cure rates and long-term tumor-specific protection across murine models of colon and mammary carcinoma. The results highlight the advantage of direct targeting of ECM components in combination with immune checkpoint blockade therapy.
The Journal of clinical investigation
Lai, YJ;Tsai, FC;Chang, GJ;Chang, SH;Huang, CC;Chen, WJ;Yeh, YH;
PMID: 35775491 | DOI: 10.1172/JCI142548
Atrial fibrosis is an essential contributor to atrial fibrillation (AF). It remains unclear whether atrial endocardial endothelial cells (AEECs) that undergo endothelial-mesenchymal transition (EndMT) are among the sources of atrial fibroblasts. We studied human atria, TGF-β-treated human AEECs, cardiac-specific TGF-β-transgenic mice, and heart failure rabbits to identify the underlying mechanism of EndMT in atrial fibrosis. Using isolated AEECs, we found that miR-181b was induced in TGF-β-treated AEECs, which decreased semaphorin 3A (Sema3A) and increased EndMT markers, and these effects could be reversed by a miR-181b antagomir. Experiments in which Sema3A was increased by a peptide or decreased by a siRNA in AEECs revealed a mechanistic link between Sema3A and LIM-kinase 1/phosphorylated cofilin (LIMK/p-cofilin) signaling and suggested that Sema3A is upstream of LIMK in regulating actin remodeling through p-cofilin. Administration of the miR-181b antagomir or recombinant Sema3A to TGF-β-transgenic mice evoked increased Sema3A, reduced EndMT markers, and significantly decreased atrial fibrosis and AF vulnerability. Our study provides a mechanistic link between the induction of EndMT by TGF-β via miR-181b/Sema3A/LIMK/p-cofilin signaling to atrial fibrosis. Blocking miR-181b and increasing Sema3A are potential strategies for AF therapeutic intervention.
Revue des Maladies Respiratoires
Tanguy, J;Boutanquoi, P;Dondaine, L;Burgy, O;Bellaye, P;Beltramo, G;Garrido, C;Bonniaud, P;Goirand, F;
| DOI: 10.1016/j.rmr.2022.11.068
Introduction Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and lethal disease of unknown aetiology. In France, it ranks among the most frequent interstitial pathologies and affects 6 out of 8 people per 100,000 each year. IPF is characterized by dysregulated healing mechanisms that leads to the accumulation of large amounts of collagen in the lung tissue that disrupts the alveolar architecture. Nintedanib and Pirfenidone are the only currently available treatments even though they are only able to slow down the disease without being curative. In this context, inhibiting HSPB5, a low molecular weight heat shock protein known to be involved in the development of fibrosis, could constitute a potential therapeutic target. Our aim consist to explore how NCI-41356 (a chemical inhibitor of HSPB5) can limit the development of pulmonary fibrosis. Methods In vivo, fibrosis was assessed in mice injected intratracheally (i.t.) with Bleomycin (BLM) and treated with NaCl or NCI-41356 (3 times i.t. or 3 times a week i.v.). Fibrosis was evaluated by collagen quantification (Sircol, Sirius Red staining), Immunofluorescence, TGF-β gene expression (RNAscope). In vitro, TGF-β1 signaling was evaluated in epithelial cells treated by TGF-β1 with or without NCI-41356 (Western Blot, Immunofluorescence, Proximity ligation assay). Results In vivo, NCI-41356 reduced the accumulation of collagen, the expression of TGF-β1 and several pro-fibrotic markers (PAI-1, α-SMA). In vitro, NCI-41356 decreased the interaction between HSPB5 and SMAD4 explaining NCI-41356 anti-fibrotic properties. Conclusion In this study, we determined that inhibition of HSPB5/SMAD4 could limit IPF in mice. NCI-41356 modulates SMAD4 nuclear translocation thus limiting TGF-β1 signaling and synthesis of collagen and pro-fibrotic markers. Further investigations with human fibrotic lung tissues are needed to determine if these results can be transposed in human.
Tanguy, J;Boutanquoi, P;Burgy, O;Dondaine, L;Beltramo, G;Uyanik, B;Garrido, C;Bonniaud, P;Bellaye, P;Goirand, F;
| DOI: 10.3390/ph16020177
Idiopathic pulmonary fibrosis is a chronic, progressive and lethal disease of unknown etiology that ranks among the most frequent interstitial lung diseases. Idiopathic pulmonary fibrosis is characterized by dysregulated healing mechanisms that lead to the accumulation of large amounts of collagen in the lung tissue that disrupts the alveolar architecture. The two currently available treatments, nintedanib and pirfenidone, are only able to slow down the disease without being curative. We demonstrated in the past that HSPB5, a low molecular weight heat shock protein, was involved in the development of fibrosis and therefore was a potential therapeutic target. Here, we have explored whether NCI-41356, a chemical inhibitor of HSPB5, can limit the development of pulmonary fibrosis. In vivo, we used a mouse model in which fibrosis was induced by intratracheal injection of bleomycin. Mice were treated with NaCl or NCI-41356 (six times intravenously or three times intratracheally). Fibrosis was evaluated by collagen quantification, immunofluorescence and TGF-β gene expression. In vitro, we studied the specific role of NCI-41356 on the chaperone function of HSPB5 and the inhibitory properties of NCI-41356 on HSPB5 interaction with its partner SMAD4 during fibrosis. TGF-β1 signaling was evaluated by immunofluorescence and Western Blot in epithelial cells treated with TGF-β1 with or without NCI-41356. In vivo, NCI-41356 reduced the accumulation of collagen, the expression of TGF-β1 and pro-fibrotic markers (PAI-1, α-SMA). In vitro, NCI-41356 decreased the interaction between HSPB5 and SMAD4 and thus modulated the SMAD4 canonical nuclear translocation involved in TGF-β1 signaling, which may explain NCI-41356 anti-fibrotic properties. In this study, we determined that inhibition of HSPB5 by NCI-41356 could limit pulmonary fibrosis in mice by limiting the synthesis of collagen and pro-fibrotic markers. At the molecular level, this outcome may be explained by the effect of NCI-41356 inhibiting HSPB5/SMAD4 interaction, thus modulating SMAD4 and TGF-β1 signaling. Further investigations are needed to determine whether these results can be transposed to humans.
Metastasis-associated macrophages constrain antitumor capability of natural killer cells in the metastatic site at least partially by membrane bound transforming growth factor β
Journal for immunotherapy of cancer
Brownlie, D;Doughty-Shenton, D;Yh Soong, D;Nixon, C;O Carragher, N;M Carlin, L;Kitamura, T;
PMID: 33472858 | DOI: 10.1136/jitc-2020-001740
Metastatic breast cancer is a leading cause of cancer-related death in women worldwide. Infusion of natural killer (NK) cells is an emerging immunotherapy for such malignant tumors, although elimination of the immunosuppressive tumor environment is required to improve its efficacy. The effects of this "metastatic" tumor environment on NK cells, however, remain largely unknown. Previous studies, including our own, have demonstrated that metastasis-associated macrophages (MAMs) are one of the most abundant immune cell types in the metastatic tumor niche in mouse models of metastatic breast cancer. We thus investigated the effects of MAMs on antitumor functions of NK cells in the metastatic tumor microenvironment. MAMs were isolated from the tumor-bearing lung of C57BL/6 mice intravenously injected with E0771-LG mouse mammary tumor cells. The effects of MAMs on NK cell cytotoxicity towards E0771-LG cells were evaluated in vitro by real-time fluorescence microscopy. The effects of MAM depletion on NK cell activation, maturation, and accumulation in the metastatic lung were evaluated by flow cytometry (CD69, CD11b, CD27) and in situ hybridization (Ncr1) using colony-stimulating factor 1 (CSF-1) receptor conditional knockout (Csf1r-cKO) mice. Finally, metastatic tumor loads in the chest region of mice were determined by bioluminescence imaging in order to evaluate the effect of MAM depletion on therapeutic efficacy of endogenous and adoptively transferred NK cells in suppressing metastatic tumor growth. MAMs isolated from the metastatic lung suppressed NK cell-induced tumor cell apoptosis in vitro via membrane-bound transforming growth factor β (TGF-β) dependent mechanisms. In the tumor-challenged mice, depletion of MAMs increased the percentage of activated (CD69+) and mature (CD11b+CD27-) NK cells and the number of Ncr1+ NK cells as well as NK cell-mediated tumor rejection in the metastatic site. Moreover, MAM depletion or TGF-β receptor antagonist treatment significantly enhanced the therapeutic efficacy of NK cell infusion in suppressing early metastatic tumor outgrowth. This study demonstrates that MAMs are a main negative regulator of NK cell function within the metastatic tumor niche, and MAM targeting is an attractive strategy to improve NK cell-based immunotherapy for metastatic breast cancer.