Jiang H, Liu X, Knolhoff BL, Hegde S, Lee KB, Jiang H, Fields RC, Pachter JA, Lim KH, DeNardo DG.
PMID: 31076405 | DOI: 10.1136/gutjnl-2018-317424
Abstract
OBJECTIVE:
We investigated how pancreatic cancer developed resistance to focal adhesion kinase (FAK) inhibition over time.
DESIGN:
Pancreatic ductal adenocarcinoma (PDAC) tumours from KPC mice (p48-CRE; LSL-KRasG12D/wt; p53flox/wt) treated with FAK inhibitor were analysed for the activation of a compensatory survival pathway in resistant tumours. We identified pathways involved in the regulation of signal transducer and activator of transcription 3 (STAT3) signalling on FAK inhibition by gene set enrichment analysis and verified these outcomes by RNA interference studies. We also tested combinatorial approaches targeting FAK and STAT3 in syngeneic transplantable mouse models of PDAC and KPC mice.
RESULTS:
In KPC mice, the expression levels of phosphorylated STAT3 (pSTAT3) were increased in PDAC cells as they progressed on FAK inhibitor therapy. This progression corresponded to decreased collagen density, lowered numbers of SMA+ fibroblasts and downregulation of the transforming growth factor beta (TGF-β)/SMAD signalling pathway in FAK inhibitor-treated PDAC tumours. Furthermore, TGF-β production by fibroblasts in vitro drives repression of STAT3 signalling and enhanced responsiveness to FAK inhibitor therapy. Knockdown of SMAD3 in pancreatic cancer cells abolished the inhibitory effects of TGF-β on pSTAT3. We further found that tumour-intrinsic STAT3 regulates the durability of the antiproliferative activity of FAK inhibitor, and combinatorial targeting of FAK and Janus kinase/STAT3 act synergistically to suppress pancreatic cancer progression in mouse models.
CONCLUSION:
Stromal depletion by FAK inhibitor therapy leads to eventual treatment resistance through the activation of STAT3 signalling. These data suggest that, similar to tumour-targeted therapies, resistance mechanisms to therapies targeting stromal desmoplasia may be critical to treatment durability.
The Journal of clinical investigation
Horn, LA;Chariou, PL;Gameiro, SR;Qin, H;Iida, M;Fousek, K;Meyer, TJ;Cam, M;Flies, D;Langermann, S;Schlom, J;Palena, C;
PMID: 35230974 | DOI: 10.1172/JCI155148
Collagens in the extracellular matrix (ECM) provide a physical barrier to tumor immune infiltration, while also acting as a ligand for immune inhibitory receptors. Transforming growth factor-β (TGF-β) is a key contributor to shaping the ECM by stimulating the production and remodeling of collagens. TGF-β-activation signatures and collagen-rich environments have both been associated with T-cell exclusion and lack of responses to immunotherapy. Here we describe the effect of targeting collagens that signal through the inhibitory leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) in combination with blockade of TGF-β and programmed cell death ligand 1 (PD-L1). This approach remodeled the tumor collagenous matrix, enhanced tumor infiltration and activation of CD8+ T cells, and repolarized suppressive macrophage populations resulting in high cure rates and long-term tumor-specific protection across murine models of colon and mammary carcinoma. The results highlight the advantage of direct targeting of ECM components in combination with immune checkpoint blockade therapy.
J Comp Pathol. 2015 Jul 16.
Palmer MV, Thacker TC, Waters WR.
PMID: 26189773 | DOI: 10.1016/j.jcpa.2015.06.004.
Mycobacterium bovis is the cause of tuberculosis in most animal species including cattle and is a serious zoonotic pathogen. In man, M. bovis infection can result in disease clinically indistinguishable from that caused by Mycobacterium tuberculosis, the cause of most human tuberculosis. Regardless of host, the typical lesion induced by M. bovis or M. tuberculosis is the tuberculoid granuloma. Tuberculoid granulomas are dynamic structures reflecting the interface between host and pathogen and, therefore, pass through various morphological stages (I to IV). Using a novel in-situ hybridization assay, transcription of various cytokine and chemokine genes was examined qualitatively and quantitatively using image analysis. In experimentally infected cattle, pulmonary granulomas of all stages were examined 150 days after aerosol exposure to M. bovis. Expression of mRNA encoding tumour necrosis factor (TNF)-α, transforming growth factor-β, interferon (IFN)-γ, interleukin (IL)-17A, IL-16, IL-10, CXCL9 and CXCL10 did not differ significantly between granulomas of different stages. However, relative expression of the various cytokines was characteristic of a Th1 response, with high TNF-α and IFN-γ expression and low IL-10 expression. Expression of IL-16 and the chemokines CXCL9 and CXCL10 was high, suggestive of granulomas actively involved in T-cell chemotaxis.
Revue des Maladies Respiratoires
Tanguy, J;Boutanquoi, P;Dondaine, L;Burgy, O;Bellaye, P;Beltramo, G;Garrido, C;Bonniaud, P;Goirand, F;
| DOI: 10.1016/j.rmr.2022.11.068
Introduction Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and lethal disease of unknown aetiology. In France, it ranks among the most frequent interstitial pathologies and affects 6 out of 8 people per 100,000 each year. IPF is characterized by dysregulated healing mechanisms that leads to the accumulation of large amounts of collagen in the lung tissue that disrupts the alveolar architecture. Nintedanib and Pirfenidone are the only currently available treatments even though they are only able to slow down the disease without being curative. In this context, inhibiting HSPB5, a low molecular weight heat shock protein known to be involved in the development of fibrosis, could constitute a potential therapeutic target. Our aim consist to explore how NCI-41356 (a chemical inhibitor of HSPB5) can limit the development of pulmonary fibrosis. Methods In vivo, fibrosis was assessed in mice injected intratracheally (i.t.) with Bleomycin (BLM) and treated with NaCl or NCI-41356 (3 times i.t. or 3 times a week i.v.). Fibrosis was evaluated by collagen quantification (Sircol, Sirius Red staining), Immunofluorescence, TGF-β gene expression (RNAscope). In vitro, TGF-β1 signaling was evaluated in epithelial cells treated by TGF-β1 with or without NCI-41356 (Western Blot, Immunofluorescence, Proximity ligation assay). Results In vivo, NCI-41356 reduced the accumulation of collagen, the expression of TGF-β1 and several pro-fibrotic markers (PAI-1, α-SMA). In vitro, NCI-41356 decreased the interaction between HSPB5 and SMAD4 explaining NCI-41356 anti-fibrotic properties. Conclusion In this study, we determined that inhibition of HSPB5/SMAD4 could limit IPF in mice. NCI-41356 modulates SMAD4 nuclear translocation thus limiting TGF-β1 signaling and synthesis of collagen and pro-fibrotic markers. Further investigations with human fibrotic lung tissues are needed to determine if these results can be transposed in human.
Matrix biology : journal of the International Society for Matrix Biology
Neupane, S;Berardinelli, SJ;Cameron, DC;Grady, RC;Komatsu, DE;Percival, CJ;Takeuchi, M;Ito, A;Liu, TW;Nairn, AV;Moremen, KW;Haltiwanger, RS;Holdener, BC;
PMID: 35167946 | DOI: 10.1016/j.matbio.2022.02.002
Many extracellular matrix (ECM) associated proteins that influence ECM properties have Thrombospondin type 1 repeats (TSRs) which are modified with O-linked fucose. The O-fucose is added in the endoplasmic reticulum to folded TSRs by the enzyme Protein O-fucosyltransferase-2 (POFUT2) and is proposed to promote efficient trafficking of substrates. The importance of this modification for function of TSR-proteins is underscored by the early embryonic lethality of mouse embryos lacking Pofut2. To overcome early lethality and investigate the impact of the Pofut2 knockout on the secretion of POFUT2 substrates and on extracellular matrix properties in vivo, we deleted Pofut2 in the developing limb mesenchyme using Prrx1-Cre recombinase. Loss of Pofut2 in the limb mesenchyme caused significant shortening of the limbs, long bones and tendons and stiff joint resembling the musculoskeletal dysplasias in human and in mice with mutations in ADAMTS or ADAMTSL proteins. Limb shortening was evident at embryonic day 14.5 where loss of O-fucosylation led to an accumulation of fibrillin 2 (FBN2), decreased BMP and IHH signaling, and increased TGF-β signaling. Consistent with these changes we saw a decrease in the size of the hypertrophic zone with lower levels of Collagen-X. Unexpectedly, we observed minimal effects of the Pofut2 knockout on secretion of two POFUT2 substrates, CCN2 or ADAMTS17, in the developing bone. In contrast, CCN2 and two other POFUT2 substrates important for bone development, ADAMTS6 and 10, showed a decrease in secretion from POFUT2-null HEK293T cells in vitro. These combined results suggest that the impact of the Pofut2 mutation is cell-type specific. In addition, these observations raise the possibility that the O-fucose modification on TSRs extends beyond promoting efficient trafficking of POFUT2 substrates and has the potential to influence their function in the extracellular environment.
Tanguy, J;Boutanquoi, P;Burgy, O;Dondaine, L;Beltramo, G;Uyanik, B;Garrido, C;Bonniaud, P;Bellaye, P;Goirand, F;
| DOI: 10.3390/ph16020177
Idiopathic pulmonary fibrosis is a chronic, progressive and lethal disease of unknown etiology that ranks among the most frequent interstitial lung diseases. Idiopathic pulmonary fibrosis is characterized by dysregulated healing mechanisms that lead to the accumulation of large amounts of collagen in the lung tissue that disrupts the alveolar architecture. The two currently available treatments, nintedanib and pirfenidone, are only able to slow down the disease without being curative. We demonstrated in the past that HSPB5, a low molecular weight heat shock protein, was involved in the development of fibrosis and therefore was a potential therapeutic target. Here, we have explored whether NCI-41356, a chemical inhibitor of HSPB5, can limit the development of pulmonary fibrosis. In vivo, we used a mouse model in which fibrosis was induced by intratracheal injection of bleomycin. Mice were treated with NaCl or NCI-41356 (six times intravenously or three times intratracheally). Fibrosis was evaluated by collagen quantification, immunofluorescence and TGF-β gene expression. In vitro, we studied the specific role of NCI-41356 on the chaperone function of HSPB5 and the inhibitory properties of NCI-41356 on HSPB5 interaction with its partner SMAD4 during fibrosis. TGF-β1 signaling was evaluated by immunofluorescence and Western Blot in epithelial cells treated with TGF-β1 with or without NCI-41356. In vivo, NCI-41356 reduced the accumulation of collagen, the expression of TGF-β1 and pro-fibrotic markers (PAI-1, α-SMA). In vitro, NCI-41356 decreased the interaction between HSPB5 and SMAD4 and thus modulated the SMAD4 canonical nuclear translocation involved in TGF-β1 signaling, which may explain NCI-41356 anti-fibrotic properties. In this study, we determined that inhibition of HSPB5 by NCI-41356 could limit pulmonary fibrosis in mice by limiting the synthesis of collagen and pro-fibrotic markers. At the molecular level, this outcome may be explained by the effect of NCI-41356 inhibiting HSPB5/SMAD4 interaction, thus modulating SMAD4 and TGF-β1 signaling. Further investigations are needed to determine whether these results can be transposed to humans.