Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for TGF-β

ACD can configure probes for the various manual and automated assays for TGF-β for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for TGF-β (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (17)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • (-) Remove TGF-β filter TGF-β (8)
  • (-) Remove TBD filter TBD (8)
  • TNF-α (5) Apply TNF-α filter
  • TGFB1 (4) Apply TGFB1 filter
  • IL-10 (4) Apply IL-10 filter
  • IFN-γ (4) Apply IFN-γ filter
  • IL-17A (4) Apply IL-17A filter
  • Tgf-β1 (4) Apply Tgf-β1 filter
  • Tgfbr1 (3) Apply Tgfbr1 filter
  • Wnt5a (2) Apply Wnt5a filter
  • Tgfb3 (2) Apply Tgfb3 filter
  • Tgfbr2 (2) Apply Tgfbr2 filter
  • Tgfβ2 (2) Apply Tgfβ2 filter
  • ACTA2 (1) Apply ACTA2 filter
  • Agtr1a (1) Apply Agtr1a filter
  • Wnt4 (1) Apply Wnt4 filter
  • Wnt7a (1) Apply Wnt7a filter
  • CXCL10 (1) Apply CXCL10 filter
  • Ptch1 (1) Apply Ptch1 filter
  • Nrg1 (1) Apply Nrg1 filter
  • TLR2 (1) Apply TLR2 filter
  • Gfral (1) Apply Gfral filter
  • EREG (1) Apply EREG filter
  • GREM1 (1) Apply GREM1 filter
  • IGF1 (1) Apply IGF1 filter
  • Foxp3 (1) Apply Foxp3 filter
  • ITGB6 (1) Apply ITGB6 filter
  • ROBO1 (1) Apply ROBO1 filter
  • MKI67 (1) Apply MKI67 filter
  • NOTUM (1) Apply NOTUM filter
  • SHH (1) Apply SHH filter
  • MYH11 (1) Apply MYH11 filter
  • WC1 (1) Apply WC1 filter
  • Wif1 (1) Apply Wif1 filter
  • COL11A1 (1) Apply COL11A1 filter
  • Ret (1) Apply Ret filter
  • Nuak1 (1) Apply Nuak1 filter
  • Dusp1 (1) Apply Dusp1 filter
  • CXCL9 (1) Apply CXCL9 filter
  • slit2 (1) Apply slit2 filter
  • robo2 (1) Apply robo2 filter
  • IL-16 (1) Apply IL-16 filter
  • TNF (1) Apply TNF filter
  • PD-L1 (1) Apply PD-L1 filter
  • VIM (1) Apply VIM filter
  • DapB (1) Apply DapB filter
  • Pofut2 (1) Apply Pofut2 filter
  • IL-12 (1) Apply IL-12 filter
  • mycobacterial 23s (1) Apply mycobacterial 23s filter
  • Optn (1) Apply Optn filter

Product

  • RNAscope 2.0 Assay (4) Apply RNAscope 2.0 Assay filter
  • RNAscope Multiplex Fluorescent Assay (2) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (1) Apply RNAscope filter
  • RNAscope 2.5 HD Assay (1) Apply RNAscope 2.5 HD Assay filter
  • RNAscope 2.5 HD Duplex (1) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Red assay (1) Apply RNAscope 2.5 HD Red assay filter
  • TBD (1) Apply TBD filter

Research area

  • Infectious Disease (3) Apply Infectious Disease filter
  • Cancer (2) Apply Cancer filter
  • Atrial fibrillation (1) Apply Atrial fibrillation filter
  • Canine Cancer (1) Apply Canine Cancer filter
  • Inflammation (1) Apply Inflammation filter
  • Other (1) Apply Other filter
  • Other: Heart (1) Apply Other: Heart filter
  • Other: Klinefelter syndrome (1) Apply Other: Klinefelter syndrome filter
  • Other: Lung Disease (1) Apply Other: Lung Disease filter
  • Stem Cells (1) Apply Stem Cells filter
  • Veterinary (1) Apply Veterinary filter

Category

  • Publications (17) Apply Publications filter
Two FOXP3+CD4+ T cell subpopulations distinctly control the prognosis of colorectal cancers

Nat Med.

2016 May 25

Saito T, Nishikawa H, Wada H, Nagano Y, Sugiyama D, Atarashi K, Maeda Y, Hamaguchi M, Ohkura N, Sato E, Nagase H, Nishimura J, Yamamoto H, Takiguchi S, Tanoue T, Suda W, Morita H, Hattori M, Honda K, Mori M, Doki Y, Sakaguchi S.
PMID: 27111280 | DOI: 10.1038/nm.4086

CD4+ T cells that express the forkhead box P3 (FOXP3) transcription factor function as regulatory T (Treg) cells and hinder effective immune responses against cancer cells. Abundant Treg cell infiltration into tumors is associated with poor clinical outcomes in various types of cancers. However, the role of Treg cells is controversial in colorectal cancers (CRCs), in which FOXP3+ T cell infiltration indicated better prognosis in some studies. Here we show that CRCs, which are commonly infiltrated by suppression-competent FOXP3hi Treg cells, can be classified into two types by the degree of additional infiltration of FOXP3lo nonsuppressive T cells. The latter, which are distinguished from FOXP3+ Treg cells by non-expression of the naive T cell marker CD45RA and instability of FOXP3, secreted inflammatory cytokines. Indeed, CRCs with abundant infiltration of FOXP3lo T cells showed significantly better prognosis than those with predominantly FOXP3hi Treg cell infiltration. Development of such inflammatory FOXP3lonon-Treg cells may depend on secretion of interleukin (IL)-12 and transforming growth factor (TGF)-β by tissues and their presence was correlated with tumor invasion by intestinal bacteria, especially Fusobacterium nucleatum. Thus, functionally distinct subpopulations of tumor-infiltrating FOXP3+ T cells contribute in opposing ways to determining CRC prognosis. Depletion of FOXP3hi Treg cells from tumor tissues, which would augment antitumor immunity, could thus be used as an effective treatment strategy for CRCs and other cancers, whereas strategies that locally increase the population of FOXP3lo non-Treg cells could be used to suppress or prevent tumor formation.

Multinucleated giant cell cytokine expression in pulmonary granulomas of cattle experimentally infected with Mycobacterium bovis.

Veterinary Immunology and Immunopathology

2016 Aug 31

Palmer MV , Thacker TC, Waters WR.
PMID: - | DOI: 10.1016/j.vetimm.2016.08.015

Regardless of host, pathogenic mycobacteria of the Mycobacterium tuberculosiscomplex such as Mycobacterium bovis, induce a characteristic lesion known as agranuloma, tubercle or tuberculoid granuloma. Granulomas represent a distinct host response to chronic antigenic stimuli, such as foreign bodies, certain bacterial components, or persistent pathogens such as M. bovis. Granulomas are composed of specific cell types including epithelioid macrophages, lymphocytes and a morphologically distinctive cell type, the multinucleated giant cell. Multinucleated giant cells are formed by the fusion of multiple macrophages; however, their function remains unclear. In humans, giant cells in tuberculous granulomas have been shown to express various cytokines, chemokines and enzymes important to the formation and maintenance of the granuloma. The objective of this study was to quantitatively assess multinucleated giant cell cytokine expression in bovine tuberculoid granulomas; focusing on cytokines of suspected relevance to bovine tuberculosis. Using calves experimentally infected with M. bovis, in situ cytokine expression was quantitatively assessed using RNAScope® for the following cytokines TNF-α, IFN-γ, TGF-β, IL-17A and IL-10. Multinucleated giant cells in bovine tuberculoid granulomas expressed all examined cytokines to varying degrees, with differential expression of TGF-β, IL-17A and IL-10 in giant cells from early versus late stage granulomas. There was a modest, positive correlation between the level of cytokine expression and cell size or number of nuclei. These results suggest that multinucleated giant cells are active participants within bovine tuberculoid granulomas, contributing to the cytokine milieu necessary to form and maintain granulomas.

Progressive pulmonary fibrosis in a murine model of Hermansky-Pudlak syndrome

Respiratory research

2022 May 04

Abudi-Sinreich, S;Bodine, SP;Yokoyama, T;Tolman, NJ;Tyrlik, M;Testa, LC;Han, CG;Dorward, HM;Wincovitch, SM;Anikster, Y;Gahl, WA;Cinar, R;Gochuico, BR;Malicdan, MCV;
PMID: 35509004 | DOI: 10.1186/s12931-022-02002-z

HPS-1 is a genetic type of Hermansky-Pudlak syndrome (HPS) with highly penetrant pulmonary fibrosis (HPSPF), a restrictive lung disease that is similar to idiopathic pulmonary fibrosis (IPF). Hps1ep/ep (pale ear) is a naturally occurring HPS-1 mouse model that exhibits high sensitivity to bleomycin-induced pulmonary fibrosis (PF). Traditional methods of administering bleomycin as an intratracheal (IT) route to induce PF in this model often lead to severe acute lung injury and high mortality rates, complicating studies focusing on pathobiological mechanisms or exploration of therapeutic options for HPSPF.To develop a murine model of HPSPF that closely mimics the progression of human pulmonary fibrosis, we investigated the pulmonary effects of systemic delivery of bleomycin in Hps1ep/ep mice using a subcutaneous minipump and compared results to oropharyngeal delivery of bleomycin.Our study revealed that systemic delivery of bleomycin induced limited, acute inflammation that resolved. The distinct inflammatory phase preceded a slow, gradually progressive fibrogenesis that was shown to be both time-dependent and dose-dependent. The fibrosis phase exhibited characteristics that better resembles human disease with focal regions of fibrosis that were predominantly found in peribronchovascular areas and in subpleural regions; central lung areas contained relatively less fibrosis.This model provides a preclinical tool that will allow researchers to study the mechanism of pulmonary fibrosis in HPS and provide a platform for the development of therapeutics to treat HPSPF. This method can be applied on studies of IPF or other monogenic disorders that lead to pulmonary fibrosis.
Metastasis-associated macrophages constrain antitumor capability of natural killer cells in the metastatic site at least partially by membrane bound transforming growth factor β

Journal for immunotherapy of cancer

2021 Jan 01

Brownlie, D;Doughty-Shenton, D;Yh Soong, D;Nixon, C;O Carragher, N;M Carlin, L;Kitamura, T;
PMID: 33472858 | DOI: 10.1136/jitc-2020-001740

Metastatic breast cancer is a leading cause of cancer-related death in women worldwide. Infusion of natural killer (NK) cells is an emerging immunotherapy for such malignant tumors, although elimination of the immunosuppressive tumor environment is required to improve its efficacy. The effects of this "metastatic" tumor environment on NK cells, however, remain largely unknown. Previous studies, including our own, have demonstrated that metastasis-associated macrophages (MAMs) are one of the most abundant immune cell types in the metastatic tumor niche in mouse models of metastatic breast cancer. We thus investigated the effects of MAMs on antitumor functions of NK cells in the metastatic tumor microenvironment. MAMs were isolated from the tumor-bearing lung of C57BL/6 mice intravenously injected with E0771-LG mouse mammary tumor cells. The effects of MAMs on NK cell cytotoxicity towards E0771-LG cells were evaluated in vitro by real-time fluorescence microscopy. The effects of MAM depletion on NK cell activation, maturation, and accumulation in the metastatic lung were evaluated by flow cytometry (CD69, CD11b, CD27) and in situ hybridization (Ncr1) using colony-stimulating factor 1 (CSF-1) receptor conditional knockout (Csf1r-cKO) mice. Finally, metastatic tumor loads in the chest region of mice were determined by bioluminescence imaging in order to evaluate the effect of MAM depletion on therapeutic efficacy of endogenous and adoptively transferred NK cells in suppressing metastatic tumor growth. MAMs isolated from the metastatic lung suppressed NK cell-induced tumor cell apoptosis in vitro via membrane-bound transforming growth factor β (TGF-β) dependent mechanisms. In the tumor-challenged mice, depletion of MAMs increased the percentage of activated (CD69+) and mature (CD11b+CD27-) NK cells and the number of Ncr1+ NK cells as well as NK cell-mediated tumor rejection in the metastatic site. Moreover, MAM depletion or TGF-β receptor antagonist treatment significantly enhanced the therapeutic efficacy of NK cell infusion in suppressing early metastatic tumor outgrowth. This study demonstrates that MAMs are a main negative regulator of NK cell function within the metastatic tumor niche, and MAM targeting is an attractive strategy to improve NK cell-based immunotherapy for metastatic breast cancer.
P-087 Transcriptomic differences between fibrotic and non-fibrotic testicular tissue reveal possible key players in Klinefelter syndrome-related testicular fibrosis

Human Reproduction

2022 Jun 29

Willems, M;Olsen, C;Caljon, B;Heremans, Y;Vloeberghs, V;De schepper, J;Tournaye, H;Van Saen, D;Goossens, E;
| DOI: 10.1093/humrep/deac107.083

Study question Which genes are differentially expressed between patients with and without testicular fibrosis? Summary answer This study revealed three X-related genes MXRA5, DCX and VC3BX, which may be involved in Klinefelter-related testicular fibrosis. What is known already Klinefelter syndrome (KS; 47,XXY) affects 1-2 in 1000 males. Most KS men suffer from azoospermia due to a loss of spermatogonial stem cells. Additionally, testicular fibrosis is detected from puberty onwards. However, mechanisms responsible for fibrosis and germ cell loss remain unknown. Previous genomics studies on KS tissue focused on germ cell loss, however, differential gene expression analyses focused on testicular fibrosis have not been performed before. This study aimed to identify factors involved in the fibrotic remodeling of KS testes by analyzing the transcriptome of (non-)fibrotic testicular tissue. Study design, size, duration Transcriptome analysis on extracted RNA from testicular biopsies was performed. RNA scope analysis and immunohistochemistry were performed as validation for the findings of the transcriptomics study. Participants/materials, setting, methods RNA sequencing was performed to compare the genetic profile of testicular biopsies from patients with (KS and testis atrophy) and without (Sertoli cell-only syndrome and fertile controls) testicular fibrosis (n = 5, each). Next, differentially expressed genes (DEGs) between KS and testis atrophy samples were compared. To gain insight in potential functions of DEGs (significant when p < 0.01 and log2FC > 2), gene-ontology and KEGG analyses were performed. To validate the gene expression results, immunohistochemistry and RNA scope were performed. Main results and the role of chance A first transcriptomic analysis of fibrotic versus non-fibrotic testis tissue resulted in 734 significant DEGs (167 up- and 567 downregulated), of which 26 were X-linked. In the top upregulated biological functions, DEGs involved in the extracellular structure organization were found, including vascular cell adhesion molecule 1 (VCAM1). KEGG analysis showed an upregulation of genes involved in the TGF-β pathway. The second analysis of KS versus testis atrophy samples resulted in 539 significant DEGs (59 up- and 480 downregulated). One of the biological functions found though gene ontology analysis was the chronic inflammatory response. When looking at the overlap of DEGs on the X-chromosome from the first and second analysis, three genes were found: matrix-remodeling associated 5 (MXRA5), doublecortin (DCX) and variable charge X-Linked 3B (VCX3B). Through validation by immunohistochemistry and RNA scope, an overexpression of VCAM1, MXRA5 and DCX was found within the fibrotic group compared to the non-fibrotic group. Limitations, reasons for caution The study included fresh testis tissue from adult KS patients, however these are quite scarce, resulting in a low number of included patients per group (n = 5). Wider implications of the findings This study revealed genes which may play a role in testicular fibrosis, including VCAM1. In addition, fibrotic genes on the X-chromosome were revealed: MXRA5, DCX and VCX3B. Up- or downregulation of these genes may prevent testicular fibrosis and thus enhance the chances at retrieving spermatozoa from KS patients. Trial registration number NA

Pages

  • « first
  • ‹ previous
  • 1
  • 2
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?