Danaf, J;da Silveira Scarpellini, C;Montandon, G;
PMID: 37089428 | DOI: 10.3389/fphys.2023.1043581
Opioid medications are the mainstay of pain management but present substantial side-effects such as respiratory depression which can be lethal with overdose. Most opioid drugs, such as fentanyl, act on opioid receptors such as the G-protein-coupled µ-opioid receptors (MOR). G-protein-coupled receptors activate pertussis toxin-sensitive G-proteins to inhibit neuronal activity. Binding of opioid ligands to MOR and subsequent activation G proteins βγ is modulated by regulator of G-protein signaling (RGS). The roles of G-proteins βγ and RGS in MOR-mediated inhibition of the respiratory network are not known. Using rodent models to pharmacologically modulate G-protein signaling, we aim to determine the roles of βγ G-proteins and RGS4. We showed that inhibition of βγ G-proteins using gallein perfused in the brainstem circuits regulating respiratory depression by opioid drugs results in complete reversal of respiratory depression. Blocking of RGS4 using CCG55014 did not change the respiratory depression induced by MOR activation despite co-expression of RGS4 and MORs in the brainstem. Our results suggest that neuronal inhibition by opioid drugs is mediated by G-proteins, but not by RGS4, which supports the concept that βγ G-proteins could be molecular targets to develop opioid overdose antidotes without the risks of re-narcotization often found with highly potent opioid drugs. On the other hand, RGS4 mediates opioid analgesia, but not respiratory depression, and RGS4 may be molecular targets to develop pain therapies without respiratory liability.
bioRxiv : the preprint server for biology
Belilos, A;Gray, C;Sanders, C;Richie, C;Sengupta, A;Hake, H;Francis, TC;
PMID: 36798245 | DOI: 10.1101/2023.02.06.527338
Response to threatening environmental stimuli requires holistic detection and encoding of important environmental features that dictate threat. Animals need to recognize the likelihood that an environmental stimulus predicts threat and respond to these salient aversive stimuli appropriately. The nucleus accumbens is uniquely positioned to process this salient, aversive information and promote motivated output, through plasticity on the major projection neurons in the brain area. Here, we uncover a nucleus accumbens core local circuit whereby excitatory plasticity facilitates learning and recall of discrete aversive cues. We demonstrate that nucleus accumbens substance P release and long-term excitatory plasticity on dopamine 2 receptor expressing projection neurons is required for learning about aversion-associated cues. Additionally, we found learning and recall were dependent on different projection-neuron subtypes. Our work demonstrates a critical role for Nucleus Accumbens substance P in cue-dependent aversive learning.
Bowen, AJ;Huang, YW;Chen, JY;Pauli, JL;Campos, CA;Palmiter, RD;
PMID: 36639374 | DOI: 10.1038/s41467-023-35826-4
Adaptive behaviors arise from an integration of current sensory context and internal representations of past experiences. The central amygdala (CeA) is positioned as a key integrator of cognitive and affective signals, yet it remains unknown whether individual populations simultaneously carry current- and future-state representations. We find that a primary nociceptive population within the CeA of mice, defined by CGRP-receptor (Calcrl) expression, receives topographic sensory information, with spatially defined representations of internal and external stimuli. While Calcrl+ neurons in both the rostral and caudal CeA respond to noxious stimuli, rostral neurons promote locomotor responses to externally sourced threats, while caudal CeA Calcrl+ neurons are activated by internal threats and promote passive coping behaviors and associative valence coding. During associative fear learning, rostral CeA Calcrl+ neurons stably encode noxious stimulus occurrence, while caudal CeA Calcrl+ neurons acquire predictive responses. This arrangement supports valence-aligned representations of current and future threats for the generation of adaptive behaviors.
Herring, CA;Simmons, RK;Freytag, S;Poppe, D;Moffet, JJD;Pflueger, J;Buckberry, S;Vargas-Landin, DB;Clément, O;Echeverría, EG;Sutton, GJ;Alvarez-Franco, A;Hou, R;Pflueger, C;McDonald, K;Polo, JM;Forrest, ARR;Nowak, AK;Voineagu, I;Martelotto, L;Lister, R;
PMID: 36318921 | DOI: 10.1016/j.cell.2022.09.039
Human brain development is underpinned by cellular and molecular reconfigurations continuing into the third decade of life. To reveal cell dynamics orchestrating neural maturation, we profiled human prefrontal cortex gene expression and chromatin accessibility at single-cell resolution from gestation to adulthood. Integrative analyses define the dynamic trajectories of each cell type, revealing major gene expression reconfiguration at the prenatal-to-postnatal transition in all cell types followed by continuous reconfiguration into adulthood and identifying regulatory networks guiding cellular developmental programs, states, and functions. We uncover links between expression dynamics and developmental milestones, characterize the diverse timing of when cells acquire adult-like states, and identify molecular convergence from distinct developmental origins. We further reveal cellular dynamics and their regulators implicated in neurological disorders. Finally, using this reference, we benchmark cell identities and maturation states in organoid models. Together, this captures the dynamic regulatory landscape of human cortical development.
Zhu, YB;Wang, Y;Hua, XX;Xu, L;Liu, MZ;Zhang, R;Liu, PF;Li, JB;Zhang, L;Mu, D;
PMID: 35167440 | DOI: 10.7554/eLife.68372
Long-lasting negative affections dampen enthusiasm for life, and dealing with negative affective states is essential for individual survival. The parabrachial nucleus (PBN) and thalamic paraventricular nucleus (PVT) are critical for modulating affective states in mice. However, the functional roles of PBN-PVT projections in modulating affective states remain elusive. Here, we show that PBN neurons send dense projection fibers to the PVT and form direct excitatory synapses with PVT neurons. Activation of the PBN-PVT pathway induces robust behaviors associated with negative affective states without affecting nociceptive behaviors. Inhibition of the PBN-PVT pathway reduces aversion-like and fear-like behaviors. Furthermore, the PVT neurons innervated by the PBN are activated by aversive stimulation, and activation of PBN-PVT projections enhances the neuronal activity of PVT neurons in response to the aversive stimulus. Consistently, activation of PVT neurons that received PBN-PVT projections induces anxiety-like behaviors. Thus, our study indicates that PBN-PVT projections modulate negative affective states in mice.
bioRxiv : the preprint server for biology
Shiers, S;Funk, G;Cervantes, A;Horton, P;Dussor, G;Hennen, S;Price, TJ;
PMID: 36778234 | DOI: 10.1101/2023.02.04.527110
Na V 1.7, a membrane-bound voltage-gated sodium channel, is preferentially expressed along primary sensory neurons, including their peripheral & central nerve endings, axons, and soma within the dorsal root ganglia and plays an integral role in amplifying membrane depolarization and pain neurotransmission. Loss- and gain-of-function mutations in the gene encoding Na V 1.7, SCN9A , are associated with a complete loss of pain sensation or exacerbated pain in humans, respectively. As an enticing pain target supported by human genetic validation, many compounds have been developed to inhibit Na V 1.7 but have disappointed in clinical trials. The underlying reasons are still unclear, but recent reports suggest that inhibiting Na V 1.7 in central terminals of nociceptor afferents is critical for achieving pain relief by pharmacological inhibition of Na V 1.7. We report for the first time that Na V 1.7 mRNA is expressed in putative projection neurons (NK1R+) in the human spinal dorsal horn, predominantly in lamina 1 and 2, as well as in deep dorsal horn neurons and motor neurons in the ventral horn. Na V 1.7 protein was found in the central axons of sensory neurons terminating in lamina 1-2, but also was detected in the axon initial segment of resident spinal dorsal horn neurons and in axons entering the anterior commissure. Given that projection neurons are critical for conveying nociceptive information from the dorsal horn to the brain, these data support that dorsal horn Na V 1.7 expression may play an unappreciated role in pain phenotypes observed in humans with genetic SCN9A mutations, and in achieving analgesic efficacy in clinical trials.
Characterisation of lamina I anterolateral system neurons that express Cre in a Phox2a-Cre mouse line
Alsulaiman, WAA;Quillet, R;Bell, AM;Dickie, AC;Polgár, E;Boyle, KA;Watanabe, M;Roome, RB;Kania, A;Todd, AJ;Gutierrez-Mecinas, M;
PMID: 34504158 | DOI: 10.1038/s41598-021-97105-w
A recently developed Phox2a::Cre mouse line has been shown to capture anterolateral system (ALS) projection neurons. Here, we used this line to test whether Phox2a-positive cells represent a distinct subpopulation among lamina I ALS neurons. We show that virtually all lamina I Phox2a cells can be retrogradely labelled from injections targeted on the lateral parabrachial area (LPb), and that most of those in the cervical cord also belong to the spinothalamic tract. Phox2a cells accounted for ~ 50-60% of the lamina I cells retrogradely labelled from LPb or thalamus. Phox2a was preferentially associated with smaller ALS neurons, and with those showing relatively weak neurokinin 1 receptor expression. The Phox2a cells were also less likely to project to the ipsilateral LPb. Although most Phox2a cells phosphorylated extracellular signal-regulated kinases following noxious heat stimulation, ~ 20% did not, and these were significantly smaller than the activated cells. This suggests that those ALS neurons that respond selectively to skin cooling, which have small cell bodies, may be included among the Phox2a population. Previous studies have defined neurochemical populations among the ALS cells, based on expression of Tac1 or Gpr83. However, we found that the proportions of Phox2a cells that expressed these genes were similar to the proportions reported for all lamina I ALS neurons, suggesting that Phox2a is not differentially expressed among cells belonging to these populations. Finally, we used a mouse line that resulted in membrane labelling of the Phox2a cells and showed that they all possess dendritic spines, although at a relatively low density. However, the distribution of the postsynaptic protein Homer revealed that dendritic spines accounted for a minority of the excitatory synapses on these cells. Our results confirm that Phox2a-positive cells in lamina I are ALS neurons, but show that the Phox2a::Cre line preferentially captures specific types of ALS cells.