Proceedings of the National Academy of Sciences of the United States of America
Joye, DAM;Rohr, KE;Suenkens, K;Wuorinen, A;Inda, T;Arzbecker, M;Mueller, E;Huber, A;Pancholi, H;Blackmore, MG;Carmona-Alcocer, V;Evans, JA;
PMID: 37098068 | DOI: 10.1073/pnas.2216820120
Daily and annual changes in light are processed by central clock circuits that control the timing of behavior and physiology. The suprachiasmatic nucleus (SCN) in the anterior hypothalamus processes daily photic inputs and encodes changes in day length (i.e., photoperiod), but the SCN circuits that regulate circadian and photoperiodic responses to light remain unclear. Somatostatin (SST) expression in the hypothalamus is modulated by photoperiod, but the role of SST in SCN responses to light has not been examined. Our results indicate that SST signaling regulates daily rhythms in behavior and SCN function in a manner influenced by sex. First, we use cell-fate mapping to provide evidence that SST in the SCN is regulated by light via de novo Sst activation. Next, we demonstrate that Sst -/- mice display enhanced circadian responses to light, with increased behavioral plasticity to photoperiod, jetlag, and constant light conditions. Notably, lack of Sst -/- eliminated sex differences in photic responses due to increased plasticity in males, suggesting that SST interacts with clock circuits that process light differently in each sex. Sst -/- mice also displayed an increase in the number of retinorecipient neurons in the SCN core, which express a type of SST receptor capable of resetting the molecular clock. Last, we show that lack of SST signaling modulates central clock function by influencing SCN photoperiodic encoding, network after-effects, and intercellular synchrony in a sex-specific manner. Collectively, these results provide insight into peptide signaling mechanisms that regulate central clock function and its response to light.
Cui, Y;Bondarenko, E;Thörn Perez, C;Chiu, D;Feldman, J;
| DOI: 10.2139/ssrn.4117921
We elucidated neural mechanisms underlying sighing. Photostimulation of parafacial (pF) neuromedin B ( NMB) or gastrin releasing peptide (GRP) or preBötC NMBR or GRPR neurons elicited ectopic sighs with latency inversely related to time from the preceding endogenous sigh. Of particular note, ectopic sighs could be produced without involvement of these peptides or their receptors in preBötC. Moreover, chemogenetic or optogenetic activation of preBötC SST neurons induced sighing, even in the presence of NMBR or GRPR antagonists. We propose that an increase in the excitability of preBötC NMBR or GRPR neurons not requiring activation of their peptide receptors activates partially overlapping pathways to generate sighs, and that preBötC SST neurons are a downstream element in the sigh generation circuit that converts normal breaths into sighs.
The Journal of neuroscience : the official journal of the Society for Neuroscience
Bellusci, L;Garcia DuBar, S;Kuah, M;Castellano, D;Muralidaran, V;Jones, E;Rozeboom, A;Gillis, RA;Vicini, S;Sahibzada, N;
PMID: 35610046 | DOI: 10.1523/JNEUROSCI.0419-22.2022
Activity in the dorsal vagal complex (DVC) is essential to gastric motility regulation. We and others have previously shown that this activity is greatly influenced by local GABAergic signaling primarily due to somatostatin-expressing GABAergic neurons (SST). To further understand the network dynamics associated with gastric motility control in the DVC, we focused on another neuron prominently distributed in this complex, neuropeptide-Y (NPY) neurons. However, the effect of these neurons on gastric motility remains unknown. Here we investigate the anatomical and functional characteristics of the NPY neurons in the nucleus tractus solitarius (NTS) and their interactions with SST neurons using transgenic mice of both sexes. We sought to determine if NPY neurons influence the activity of gastric projecting neurons, synaptically interact with SST neurons, and affect end-organ function. Our results using combined neuroanatomy and optogenetic in vitro and in vivo show that NPY neurons: are part of the gastric vagal circuit as they are trans-synaptically labeled by a viral tracer from the gastric antrum; are primarily excitatory as optogenetic activation of these neurons evoke EPSCs in gastric-antrum projecting neurons; are functionally coupled to each other and reciprocally connected to SST neurons, whose stimulation has a potent inhibitory effect on the action potential firing of the NPY neurons; and affect gastric tone and motility as reflected by their robust optogenetic response in vivo. These findings indicate that interacting NPY and SST neurons are integral to the network that controls vagal transmission to the stomach.Significance StatementThe brainstem neurons in the dorsal nuclear complex are essential for regulating vagus nerve activity that affects the stomach via tone and motility. Two distinct non-overlapping populations of predominantly excitatory neuropeptide Y (NPY) neurons and predominantly inhibitory somatostatin (SST) neurons form reciprocal connections with each other in the nucleus of the tractus solitarius (NTS) and with premotor neurons in the dorsal motor nucleus of the vagus to control gastric mechanics. Light activation and inhibition of NTS. NPY neurons increased and decreased gastric motility, respectively, while both activation and inhibition of NTS SST neurons enhanced gastric motility.
Basal forebrain mediates prosocial behavior via disinhibition of midbrain dopamine neurons
Proceedings of the National Academy of Sciences of the United States of America
Wang, J;Li, J;Yang, Q;Xie, YK;Wen, YL;Xu, ZZ;Li, Y;Xu, T;Wu, ZY;Duan, S;Xu, H;
PMID: 33563763 | DOI: 10.1073/pnas.2019295118
Sociability is fundamental for our daily life and is compromised in major neuropsychiatric disorders. However, the neuronal circuit mechanisms underlying prosocial behavior are still elusive. Here we identify a causal role of the basal forebrain (BF) in the control of prosocial behavior via inhibitory projections that disinhibit the midbrain ventral tegmental area (VTA) dopamine (DA) neurons. Specifically, BF somatostatin-positive (SST) inhibitory neurons were robustly activated during social interaction. Optogenetic inhibition of these neurons in BF or their axon terminals in the VTA largely abolished social preference. Electrophysiological examinations further revealed that SST neurons predominantly targeted VTA GABA neurons rather than DA neurons. Consistently, optical inhibition of SST neuron axon terminals in the VTA decreased DA release in the nucleus accumbens during social interaction, confirming a disinhibitory action. These data reveal a previously unappreciated function of the BF in prosocial behavior through a disinhibitory circuitry connected to the brain's reward system.
Sun, J;Yuan, Y;Wu, X;Liu, A;Wang, J;Yang, S;Liu, B;Kong, Y;Wang, L;Li, Q;Zhang, S;Yuan, T;Xu, T;Huang, J;
| DOI: 10.2139/ssrn.4013919
The use of body-focused repetitive behaviors (BFRBs) is conceptualized as a means for emotion regulation upon stress exposure. However, it is unclear about the neurological mechanism on how repetitive behaviors affect emotion regulation to cope with stress. Here, we identify that excitatory somatostatin-positive neurons in the medial paralemniscal nucleus (MPLSST neurons) control self-grooming and encode reward. MPLSST neuronal activity is responsible for self-grooming initiation and maintenance. Loss-of-function of MPLSST neurons attenuates both self-grooming motor actions and anxiety alleviation upon stress exposure. Activating MPLSST neurons generate reward and drive reinforcement through eliciting dopamine release in the downstream target of the ventral tegmental area (VTA), and neuropeptide SST facilitates the rewarding impact of MPLSST neurons. MPLSST neuron-mediated self-grooming is triggered by inputs from the central amygdala (CeA). Our study validates a CeA-MPLSST-VTADA circuit mediating the impact of self-grooming on emotion regulation to cope with stress through generating reward and pleasurable feelings.
Kim J, Zhang X, Muralidhar S, LeBlanc SA, Tonegawa S.
PMID: 28334609 | DOI: 10.1016/j.neuron.2017.02.034
Basolateral amygdala (BLA) principal cells are capable of driving and antagonizing behaviors of opposing valence. BLA neurons project to the central amygdala (CeA), which also participates in negative and positive behaviors. However, the CeA has primarily been studied as the site for negative behaviors, and the causal role for CeA circuits underlying appetitive behaviors is poorly understood. Here, we identify several genetically distinct populations of CeA neurons that mediate appetitive behaviors and dissect the BLA-to-CeA circuit for appetitive behaviors. Protein phosphatase 1 regulatory subunit 1B+ BLA pyramidal neurons to dopamine receptor 1+ CeA neurons define a pathway for promoting appetitive behaviors, while R-spondin 2+ BLA pyramidal neurons to dopamine receptor 2+ CeA neurons define a pathway for suppressing appetitive behaviors. These data reveal genetically defined neural circuits in the amygdala that promote and suppress appetitive behaviors analogous to the direct and indirect pathways of the basal ganglia.
Li, L;Durand-de Cuttoli, R;Aubry, AV;Burnett, CJ;Cathomas, F;Parise, LF;Chan, KL;Morel, C;Yuan, C;Shimo, Y;Lin, HY;Wang, J;Russo, SJ;
PMID: 36450985 | DOI: 10.1038/s41586-022-05484-5
In humans, traumatic social experiences can contribute to psychiatric disorders1. It is suggested that social trauma impairs brain reward function such that social behaviour is no longer rewarding, leading to severe social avoidance2,3. In rodents, the chronic social defeat stress (CSDS) model has been used to understand the neurobiology underlying stress susceptibility versus resilience following social trauma, yet little is known regarding its impact on social reward4,5. Here we show that, following CSDS, a subset of male and female mice, termed susceptible (SUS), avoid social interaction with non-aggressive, same-sex juvenile C57BL/6J mice and do not develop context-dependent social reward following encounters with them. Non-social stressors have no effect on social reward in either sex. Next, using whole-brain Fos mapping, in vivo Ca2+ imaging and whole-cell recordings, we identified a population of stress/threat-responsive lateral septum neurotensin (NTLS) neurons that are activated by juvenile social interactions only in SUS mice, but not in resilient or unstressed control mice. Optogenetic or chemogenetic manipulation of NTLS neurons and their downstream connections modulates social interaction and social reward. Together, these data suggest that previously rewarding social targets are possibly perceived as social threats in SUS mice, resulting from hyperactive NTLS neurons that occlude social reward processing.
Gut-brain communication by distinct sensory neurons differently controls feeding and glucose metabolism
Borgmann, D;Ciglieri, E;Biglari, N;Brandt, C;Cremer, AL;Backes, H;Tittgemeyer, M;Wunderlich, FT;Brüning, JC;Fenselau, H;
PMID: 34043943 | DOI: 10.1016/j.cmet.2021.05.002
Sensory neurons relay gut-derived signals to the brain, yet the molecular and functional organization of distinct populations remains unclear. Here, we employed intersectional genetic manipulations to probe the feeding and glucoregulatory function of distinct sensory neurons. We reconstruct the gut innervation patterns of numerous molecularly defined vagal and spinal afferents and identify their downstream brain targets. Bidirectional chemogenetic manipulations, coupled with behavioral and circuit mapping analysis, demonstrated that gut-innervating, glucagon-like peptide 1 receptor (GLP1R)-expressing vagal afferents relay anorexigenic signals to parabrachial nucleus neurons that control meal termination. Moreover, GLP1R vagal afferent activation improves glucose tolerance, and their inhibition elevates blood glucose levels independent of food intake. In contrast, gut-innervating, GPR65-expressing vagal afferent stimulation increases hepatic glucose production and activates parabrachial neurons that control normoglycemia, but they are dispensable for feeding regulation. Thus, distinct gut-innervating sensory neurons differentially control feeding and glucoregulatory neurocircuits and may provide specific targets for metabolic control.
Biological Psychiatry Global Open Science
Jiang, S;Zhang, H;Eiden, L;
| DOI: 10.1016/j.bpsgos.2023.04.001
Background The neuropeptide PACAP is a master regulator of central and peripheral stress responses, yet it is not clear how PACAP projections throughout the brain execute endocrine and behavioral stress responses. Methods We used AAV neuronal tracing, an acute restraint stress (ARS) paradigm, and intersectional genetics, in C57Bl6 mice, to identify PACAP-containing circuits controlling stress-induced behavior and endocrine activation. Results PACAP deletion from forebrain excitatory neurons, including a projection directly from medial prefrontal cortex (mPFC) to hypothalamus, impairs c-fos activation and CRH mRNA elevation in PVN after 2 hr of restraint, without affecting ARS-induced hypophagia, or c-fos elevation in non-hypothalamic brain. Elimination of PACAP within projections from lateral parabrachial nucleus to extended amygdala (EA), on the other hand, attenuates ARS-induced hypophagia, along with EA fos induction, without affecting ARS-induced CRH mRNA elevation in PVN. PACAP projections to EA terminate at PKCδ neurons in both central amygdala (CeA) and oval nuclei of bed nucleus of stria terminalis (BNSTov). Silencing of PKCδ neurons in CeA, but not in BNSTov, attenuates ARS-induced hypophagia. Experiments were carried out in mice of both sexes with n>5 per group. Conclusions A frontocortical descending PACAP projection controls PVN CRH mRNA production, to maintain hypothalamo-pituitary adrenal (HPA) axis activation, and regulate the endocrine response to stress. An ascending PACAPergic projection from eLPBn to PKCδ neurons in central amygdala regulates behavioral responses to stress. Defining two separate limbs of the acute stress response provides broader insight into the specific brain circuitry engaged by the psychogenic stress response.
Frontiers in molecular neuroscience
Kim, JJ;Sapio, MR;Vazquez, FA;Maric, D;Loydpierson, AJ;Ma, W;Zarate, CA;Iadarola, MJ;Mannes, AJ;
PMID: 35706427 | DOI: 10.3389/fnmol.2022.892345
Ketamine, an N-methyl-D-aspartate (NMDA)-receptor antagonist, is a recently revitalized treatment for pain and depression, yet its actions at the molecular level remain incompletely defined. In this molecular-pharmacological investigation in the rat, we used short- and longer-term infusions of high dose ketamine to stimulate neuronal transcription processes. We hypothesized that a progressively stronger modulation of neuronal gene networks would occur over time in cortical and limbic pathways. A continuous intravenous administration paradigm for ketamine was developed in rat consisting of short (1 h) and long duration (10 h, and 10 h + 24 h recovery) infusions of anesthetic concentrations to activate or inhibit gene transcription in a pharmacokinetically controlled fashion. Transcription was measured by RNA-Seq in three brain regions: frontal cortex, hippocampus, and amygdala. Cellular level gene localization was performed with multiplex fluorescent in situ hybridization. Induction of a shared transcriptional regulatory network occurred within 1 h in all three brain regions consisting of (a) genes involved in stimulus-transcription factor coupling that are induced during altered synaptic activity (immediate early genes, IEGs, such as c-Fos, 9-12 significant genes per brain region, p < 0.01 per gene) and (b) the Nrf2 oxidative stress-antioxidant response pathway downstream from glutamate signaling (Nuclear Factor Erythroid-Derived 2-Like 2) containing 12-25 increasing genes (p < 0.01) per brain region. By 10 h of infusion, the acute results were further reinforced and consisted of more and stronger gene alterations reflecting a sustained and accentuated ketamine modulation of regional excitation and plasticity. At the cellular level, in situ hybridization localized up-regulation of the plasticity-associated gene Bdnf, and the transcription factors Nr4a1 and Fos, in cortical layers III and V. After 24 h recovery, we observed overshoot of transcriptional processes rather than a smooth return to homeostasis suggesting an oscillation of plasticity occurs during the transition to a new phase of neuronal regulation. These data elucidate critical molecular regulatory actions during and downstream of ketamine administration that may contribute to the unique drug actions of this anesthetic agent. These molecular investigations point to pathways linked to therapeutically useful attributes of ketamine.