Proceedings of the National Academy of Sciences of the United States of America
Joye, DAM;Rohr, KE;Suenkens, K;Wuorinen, A;Inda, T;Arzbecker, M;Mueller, E;Huber, A;Pancholi, H;Blackmore, MG;Carmona-Alcocer, V;Evans, JA;
PMID: 37098068 | DOI: 10.1073/pnas.2216820120
Daily and annual changes in light are processed by central clock circuits that control the timing of behavior and physiology. The suprachiasmatic nucleus (SCN) in the anterior hypothalamus processes daily photic inputs and encodes changes in day length (i.e., photoperiod), but the SCN circuits that regulate circadian and photoperiodic responses to light remain unclear. Somatostatin (SST) expression in the hypothalamus is modulated by photoperiod, but the role of SST in SCN responses to light has not been examined. Our results indicate that SST signaling regulates daily rhythms in behavior and SCN function in a manner influenced by sex. First, we use cell-fate mapping to provide evidence that SST in the SCN is regulated by light via de novo Sst activation. Next, we demonstrate that Sst -/- mice display enhanced circadian responses to light, with increased behavioral plasticity to photoperiod, jetlag, and constant light conditions. Notably, lack of Sst -/- eliminated sex differences in photic responses due to increased plasticity in males, suggesting that SST interacts with clock circuits that process light differently in each sex. Sst -/- mice also displayed an increase in the number of retinorecipient neurons in the SCN core, which express a type of SST receptor capable of resetting the molecular clock. Last, we show that lack of SST signaling modulates central clock function by influencing SCN photoperiodic encoding, network after-effects, and intercellular synchrony in a sex-specific manner. Collectively, these results provide insight into peptide signaling mechanisms that regulate central clock function and its response to light.
The Journal of neuroscience : the official journal of the Society for Neuroscience
Bellusci, L;Garcia DuBar, S;Kuah, M;Castellano, D;Muralidaran, V;Jones, E;Rozeboom, A;Gillis, RA;Vicini, S;Sahibzada, N;
PMID: 35610046 | DOI: 10.1523/JNEUROSCI.0419-22.2022
Activity in the dorsal vagal complex (DVC) is essential to gastric motility regulation. We and others have previously shown that this activity is greatly influenced by local GABAergic signaling primarily due to somatostatin-expressing GABAergic neurons (SST). To further understand the network dynamics associated with gastric motility control in the DVC, we focused on another neuron prominently distributed in this complex, neuropeptide-Y (NPY) neurons. However, the effect of these neurons on gastric motility remains unknown. Here we investigate the anatomical and functional characteristics of the NPY neurons in the nucleus tractus solitarius (NTS) and their interactions with SST neurons using transgenic mice of both sexes. We sought to determine if NPY neurons influence the activity of gastric projecting neurons, synaptically interact with SST neurons, and affect end-organ function. Our results using combined neuroanatomy and optogenetic in vitro and in vivo show that NPY neurons: are part of the gastric vagal circuit as they are trans-synaptically labeled by a viral tracer from the gastric antrum; are primarily excitatory as optogenetic activation of these neurons evoke EPSCs in gastric-antrum projecting neurons; are functionally coupled to each other and reciprocally connected to SST neurons, whose stimulation has a potent inhibitory effect on the action potential firing of the NPY neurons; and affect gastric tone and motility as reflected by their robust optogenetic response in vivo. These findings indicate that interacting NPY and SST neurons are integral to the network that controls vagal transmission to the stomach.Significance StatementThe brainstem neurons in the dorsal nuclear complex are essential for regulating vagus nerve activity that affects the stomach via tone and motility. Two distinct non-overlapping populations of predominantly excitatory neuropeptide Y (NPY) neurons and predominantly inhibitory somatostatin (SST) neurons form reciprocal connections with each other in the nucleus of the tractus solitarius (NTS) and with premotor neurons in the dorsal motor nucleus of the vagus to control gastric mechanics. Light activation and inhibition of NTS. NPY neurons increased and decreased gastric motility, respectively, while both activation and inhibition of NTS SST neurons enhanced gastric motility.
Yu, B;Zhang, Q;Lin, L;Zhou, X;Ma, W;Wen, S;Li, C;Wang, W;Wu, Q;Wang, X;Li, XM;
PMID: 36788214 | DOI: 10.1038/s41421-022-00506-y
The amygdala, or an amygdala-like structure, is found in the brains of all vertebrates and plays a critical role in survival and reproduction. However, the cellular architecture of the amygdala and how it has evolved remain elusive. Here, we generated single-nucleus RNA-sequencing data for more than 200,000 cells in the amygdala of humans, macaques, mice, and chickens. Abundant neuronal cell types from different amygdala subnuclei were identified in all datasets. Cross-species analysis revealed that inhibitory neurons and inhibitory neuron-enriched subnuclei of the amygdala were well-conserved in cellular composition and marker gene expression, whereas excitatory neuron-enriched subnuclei were relatively divergent. Furthermore, LAMP5+ interneurons were much more abundant in primates, while DRD2+ inhibitory neurons and LAMP5+SATB2+ excitatory neurons were dominant in the human central amygdalar nucleus (CEA) and basolateral amygdalar complex (BLA), respectively. We also identified CEA-like neurons and their species-specific distribution patterns in chickens. This study highlights the extreme cell-type diversity in the amygdala and reveals the conservation and divergence of cell types and gene expression patterns across species that may contribute to species-specific adaptations.
Wei, JR;Hao, ZZ;Xu, C;Huang, M;Tang, L;Xu, N;Liu, R;Shen, Y;Teichmann, SA;Miao, Z;Liu, S;
PMID: 36371428 | DOI: 10.1038/s41467-022-34590-1
The primate neocortex exerts high cognitive ability and strong information processing capacity. Here, we establish a single-cell RNA sequencing dataset of 133,454 macaque visual cortical cells. It covers major cortical cell classes including 25 excitatory neuron types, 37 inhibitory neuron types and all glial cell types. We identified layer-specific markers including HPCAL1 and NXPH4, and also identified two cell types, an NPY-expressing excitatory neuron type that expresses the dopamine receptor D3 gene; and a primate specific activity-dependent OSTN + sensory neuron type. Comparisons of our dataset with humans and mice show that the gene expression profiles differ between species in relation to genes that are implicated in the synaptic plasticity and neuromodulation of excitatory neurons. The comparisons also revealed that glutamatergic neurons may be more diverse across species than GABAergic neurons and non-neuronal cells. These findings pave the way for understanding how the primary cortex fulfills the high-cognitive functions.