ACD can configure probes for the various manual and automated assays for SST for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Cell reports
2021 Nov 09
Pereira Luppi, M;Azcorra, M;Caronia-Brown, G;Poulin, JF;Gaertner, Z;Gatica, S;Moreno-Ramos, OA;Nouri, N;Dubois, M;Ma, YC;Ramakrishnan, C;Fenno, L;Kim, YS;Deisseroth, K;Cicchetti, F;Dombeck, DA;Awatramani, R;
PMID: 34758317 | DOI: 10.1016/j.celrep.2021.109975
Cell reports
2021 Nov 02
Maksymetz, J;Byun, NE;Luessen, DJ;Li, B;Barry, RL;Gore, JC;Niswender, CM;Lindsley, CW;Joffe, ME;Conn, PJ;
PMID: 34731619 | DOI: 10.1016/j.celrep.2021.109950
Cell reports
2021 Oct 19
Graham, K;Spruston, N;Bloss, EB;
PMID: 34686328 | DOI: 10.1016/j.celrep.2021.109837
Nature neuroscience
2021 Jun 24
Mohammad, H;Senol, E;Graf, M;Lee, CY;Li, Q;Liu, Q;Yeo, XY;Wang, M;Laskaratos, A;Xu, F;Luo, SX;Jung, S;Augustine, GJ;Fu, Y;
PMID: 34168339 | DOI: 10.1038/s41593-021-00875-9
Cell metabolism
2021 May 21
Borgmann, D;Ciglieri, E;Biglari, N;Brandt, C;Cremer, AL;Backes, H;Tittgemeyer, M;Wunderlich, FT;Brüning, JC;Fenselau, H;
PMID: 34043943 | DOI: 10.1016/j.cmet.2021.05.002
eNeuro
2018 Jan 24
McCullough KM, Morrison FG, Hartmann J, Carlezon WA, Ressler KJ.
PMID: - | DOI: 10.1523/ENEURO.0010-18.2018
Molecular identification and characterization of fear controlling circuitries is a promising path towards developing targeted treatments of fear-related disorders. Three-color in situ hybridization analysis was used to determine whether somatostatin (Sst), neurotensin (Nts), corticotropin releasing factor (Crf), tachykinin 2 (Tac2), protein kinase c delta (Prkcd), and dopamine receptor 2 (Drd2) mRNA co-localize in male mouse amygdala neurons. Expression and co-localization was examined across capsular (CeC), lateral (CeL), and medial (CeM) compartments of the central amygdala. The greatest expression of Prkcd and Drd2 were found in CeC and CeL. Crf was expressed primarily in CeL while Sst, Nts, and Tac2 expressing neurons were distributed between CeL and CeM. High levels of co-localization were identified between Sst, Nts, Crf, and Tac2 within the CeL while little co-localization was detected between any mRNAs within the CeM. These findings provide a more detailed understanding of the molecular mechanisms that regulate the development and maintenance of fear and anxiety behaviors.
Significance Statement Functional and behavioral analysis of central amygdala microcircuits has yielded significant insights into the role of this nucleus in fear and anxiety related behaviors. However, precise molecular and locational description of examined populations is lacking. This publication provides a quantified regionally precise description of the expression and co-expression of six frequently examined central amygdala population markers. Most revealing, within the most commonly examined region, the posterior CeL, four of these markers are extensively co-expressed suggesting the potential for experimental redundancy. This data clarifies circuit interaction and function and will increase relevance and precision of future cell-type specific reports.
Front. Neuroanat.
2018 Jan 17
Albert-Gascó H, Ma S, Ros-Bernal F, Sánchez-Pérez AM, Gundlach AL, Olucha-Bordonau FE.
PMID: - | DOI: 10.3389/fnana.2017.00133
The medial septum (MS) complex modulates hippocampal function and related behaviors. Septohippocampal projections promote and control different forms of hippocampal synchronization. Specifically, GABAergic and cholinergic projections targeting the hippocampal formation from the MS provide bursting discharges to promote theta rhythm, or tonic activity to promote gamma oscillations. In turn, the MS is targeted by ascending projections from the hypothalamus and brainstem. One of these projections arises from the nucleus incertus in the pontine tegmentum, which contains GABA neurons that co-express the neuropeptide relaxin-3 (Rln3). Both stimulation of the nucleus incertus and septal infusion of Rln3 receptor agonist peptides promotes hippocampal theta rhythm. The Gi/o-protein-coupled receptor, relaxin-family peptide receptor 3 (RXFP3), is the cognate receptor for Rln3 and identification of the transmitter phenotype of neurons expressing RXFP3 in the septohippocampal system can provide further insights into the role of Rln3 transmission in the promotion of septohippocampal theta rhythm. Therefore, we used RNAscope multiplex in situ hybridization to characterize the septal neurons expressing Rxfp3mRNA in the rat. Our results demonstrate that Rxfp3 mRNA is abundantly expressed in vesicular GABA transporter (vGAT) mRNA- and parvalbumin (PV) mRNA-positive GABA neurons in MS, whereas ChATmRNA-positive acetylcholine neurons lack Rxfp3 mRNA. Approximately 75% of Rxfp3 mRNA-positive neurons expressed vGAT mRNA (and 22% were PV mRNA-positive), while the remaining 25% expressed Rxfp3 mRNA only, consistent with a potential glutamatergic phenotype. Similar proportions were observed in the posterior septum. The occurrence of RXFP3 in PV-positive GABAergic neurons gives support to a role for the Rln3-RXFP3 system in septohippocampal theta rhythm.
Biological Psychiatry
2018 Oct 05
Shukla R, Prevot TD, French L, Isserlin R, Rocco BR, Banasr M, Bader GD, Sibille E.
PMID: - | DOI: 10.1016/j.celrep.2018.09.034
Background Aging is accompanied by altered thinking (cognition) and feeling (mood), functions that depend on information processing by brain cortical cell microcircuits. We hypothesized that age-associated long-term functional and biological changes are mediated by gene transcriptomic changes within neuronal cell-types forming cortical microcircuits, namely excitatory pyramidal cells (PYC) and inhibitory GABAergic neurons expressing vasoactive intestinal peptide (Vip), somatostatin (Sst) and parvalbumin (Pvalb). Methods To test this hypothesis, we assessed locomotor, anxiety-like and cognitive behavioral changes between young (2 months, n=9) and old (22 months, n=12) male C57BL/6 mice, and performed frontal cortex cell-type specific molecular profiling, using laser-capture microscopy and RNA sequencing. Results were analyzed by neuroinformatics and validated by fluorescent in situ hybridization. Results Old-mice displayed increased anxiety and reduced working memory. The four cell-types displayed distinct age-related transcriptomes and biological pathway profiles, affecting metabolic and cell signaling pathways, and selective markers of neuronal vulnerability (Ryr3), resilience (Oxr1), and mitochondrial dynamics (Opa1), suggesting high age-related vulnerability of PYCs, and variable degree of adaptation in GABAergic neurons. Correlations between gene expression and behaviors suggest that changes in cognition and anxiety associated with age are partly mediated by normal age-related cell changes, and that additional age-independent decreases in synaptic and signaling pathways, notably in PYC and SST-neurons further contribute to behavioral changes. Conclusions Our study demonstrates cell-dependent differential vulnerability and coordinated cell-specific cortical microcircuit molecular changes with age. Collectively, the results suggest intrinsic molecular links between aging, cognition and mood-related behaviors with SST-neurons contributing evenly to both behavioral conditions.
Mol Psychiatry.
2019 Feb 12
Lazaridis I, Tzortzi O, Weglage M, Märtin A, Xuan Y, Parent M, Johansson Y, Fuzik J, Fürth D, Fenno LE, Ramakrishnan C, Silberberg G, Deisseroth K, Carlén M, Meletis K.
PMID: 30755721 | DOI: 10.1038/s41380-019-0369-5
Encoding and predicting aversive events are critical functions of circuits that support survival and emotional well-being. Maladaptive circuit changes in emotional valence processing can underlie the pathophysiology of affective disorders. The lateral habenula (LHb) has been linked to aversion and mood regulation through modulation of the dopamine and serotonin systems. We have defined the identity and function of glutamatergic (Vglut2) control of the LHb, comparing the role of inputs originating in the globus pallidus internal segment (GPi), and lateral hypothalamic area (LHA), respectively. We found that LHb-projecting LHA neurons, and not the proposed GABA/glutamate co-releasing GPi neurons, are responsible for encoding negative value. Monosynaptic rabies tracing of the presynaptic organization revealed a predominantly limbic input onto LHA Vglut2 neurons, while sensorimotor inputs were more prominent onto GABA/glutamate co-releasing GPi neurons. We further recorded the activity of LHA Vglut2 neurons, by imaging calcium dynamics in response to appetitive versus aversive events in conditioning paradigms. LHA Vglut2 neurons formed activity clusters representing distinct reward or aversion signals, including a population that responded to mild foot shocks and predicted aversive events. We found that the LHb-projecting LHA Vglut2 neurons encode negative valence and rapidly develop a prediction signal for negative events. These findings establish the glutamatergic LHA-LHb circuit as a critical node in value processing.
Hippocampus
2019 Mar 19
Rytova V, Ganella DE, Hawkes D, Bathgate RAD, Ma S and Gundlach AL
PMID: 30891856 | DOI: 10.1002/hipo.23089
Journal of Neuroendocrinology
2023 May 18
Watanabe, Y;Fisher, L;Campbell, R;Jasoni, C;
| DOI: 10.1111/jne.13302
Biological Psychiatry Global Open Science
2023 Apr 01
Jiang, S;Zhang, H;Eiden, L;
| DOI: 10.1016/j.bpsgos.2023.04.001
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com