Kim, S;Oh, H;Choi, SH;Yoo, YE;Noh, YW;Cho, Y;Im, GH;Lee, C;Oh, Y;Yang, E;Kim, G;Chung, WS;Kim, H;Kang, H;Bae, Y;Kim, SG;Kim, E;
PMID: 36130507 | DOI: 10.1016/j.celrep.2022.111398
Myelin transcription factor 1 like (Myt1l), a zinc-finger transcription factor, promotes neuronal differentiation and is implicated in autism spectrum disorder (ASD) and intellectual disability. However, it remains unclear whether Myt1l promotes neuronal differentiation in vivo and its deficiency in mice leads to disease-related phenotypes. Here, we report that Myt1l-heterozygous mutant (Myt1l-HT) mice display postnatal age-differential ASD-related phenotypes: newborn Myt1l-HT mice, with strong Myt1l expression, show ASD-like transcriptomic changes involving decreased synaptic gene expression and prefrontal excitatory synaptic transmission and altered righting reflex. Juvenile Myt1l-HT mice, with markedly decreased Myt1l expression, display reverse ASD-like transcriptomes, increased prefrontal excitatory transmission, and largely normal behaviors. Adult Myt1l-HT mice show ASD-like transcriptomes involving astrocytic and microglial gene upregulation, increased prefrontal inhibitory transmission, and behavioral deficits. Therefore, Myt1l haploinsufficiency leads to ASD-related phenotypes in newborn mice, which are temporarily normalized in juveniles but re-appear in adults, pointing to continuing phenotypic changes long after a marked decrease of Myt1l expression in juveniles.
Teng, S;Zhen, F;Wang, L;Schalchli, JC;Simko, J;Chen, X;Jin, H;Makinson, CD;Peng, Y;
PMID: 35961989 | DOI: 10.1038/s41467-022-32461-3
Understanding the neural mechanisms underlying sleep state transitions is a fundamental goal of neurobiology and important for the development of new treatments for insomnia and other sleep disorders. Yet, brain circuits controlling this process remain poorly understood. Here we identify a population of sleep-active glutamatergic neurons in the ventrolateral medulla (VLM) that project to the preoptic area (POA), a prominent sleep-promoting region, in mice. Microendoscopic calcium imaging demonstrate that these VLM glutamatergic neurons display increased activity during the transitions from wakefulness to Non-Rapid Eye Movement (NREM) sleep. Chemogenetic silencing of POA-projecting VLM neurons suppresses NREM sleep, whereas chemogenetic activation of these neurons promotes NREM sleep. Moreover, we show that optogenetic activation of VLM glutamatergic neurons or their projections in the POA initiates NREM sleep in awake mice. Together, our findings uncover an excitatory brainstem-hypothalamic circuit that controls the wake-sleep transitions.
Jin, S;Maddern, XJ;Campbell, EJ;Lawrence, AJ;
PMID: 36038028 | DOI: 10.1016/j.neulet.2022.136858
Projections to the striatum are well-identified. For example, in the ventral striatum, two major inputs to the medial nucleus accumbens shell include the ventral subiculum and basolateral amygdala. However, the chemical phenotype(s) of these projection neurons remain unclear. In this study, we examined amygdalostriatal and corticostriatal connectivity in rats using injections of the retrograde tracer cholera toxin b into the nucleus accumbens shell. To determine the neurotransmitter identity of projection neurons, we combined retrograde tracing with RNAscope in-situ hybridization, using mRNA probes against vesicular transporters associated with glutamatergic (VGluT1 - Slc17a7, VGluT2 - Slc17a6) or GABAergic (VGaT - Slc32a1) neurotransmission. Confocal imaging was used to examine vesicular transporter mRNA expression in the ventral subiculum and basolateral amygdala inputs to the nucleus accumbens shell. Both projections contained mostly VGluT1-expressing neurons. Interestingly, almost a quarter of ventral subiculum to nucleus accumbens shell projections co-expressed VGluT1 and VGluT2 compared to a relatively small number (∼3%) that were co-expressed in basolateral amygdala to nucleus accumbens shell afferents. However, almost a quarter of basolateral amygdala to nucleus accumbens shell projections were VGaT-positive. These findings highlight the diverse proportions of glutamatergic and GABAergic afferents in two major projections to the nucleus accumbens shell and raise important questions for functional studies.
Ito, N;Takatsu, A;Ito, H;Koike, Y;Yoshioka, K;Kamei, Y;Imai, SI;
PMID: 35905718 | DOI: 10.1016/j.celrep.2022.111131
Sarcopenia and frailty are urgent socio-economic problems worldwide. Here we demonstrate a functional connection between the lateral hypothalamus (LH) and skeletal muscle through Slc12a8, a recently identified nicotinamide mononucleotide transporter, and its relationship to sarcopenia and frailty. Slc12a8-expressing cells are mainly localized in the LH. LH-specific knockdown of Slc12a8 in young mice decreases activity-dependent energy and carbohydrate expenditure and skeletal muscle functions, including muscle mass, muscle force, intramuscular glycolysis, and protein synthesis. LH-specific Slc12a8 knockdown also decreases sympathetic nerve signals at neuromuscular junctions and β2-adrenergic receptors in skeletal muscle, indicating the importance of the LH-sympathetic nerve-β2-adrenergic receptor axis. LH-specific overexpression of Slc12a8 in aged mice significantly ameliorates age-associated decreases in energy expenditure and skeletal muscle functions. Our results highlight an important role of Slc12a8 in the LH for regulation of whole-body metabolism and skeletal muscle functions and provide insights into the pathogenesis of sarcopenia and frailty during aging.
Xu, J;Jo, A;DeVries, RP;Deniz, S;Cherian, S;Sunmola, I;Song, X;Marshall, JJ;Gruner, KA;Daigle, TL;Contractor, A;Lerner, TN;Zeng, H;Zhu, Y;
PMID: 35793636 | DOI: 10.1016/j.celrep.2022.111036
Recent developments in intersectional strategies have greatly advanced our ability to precisely target brain cell types based on unique co-expression patterns. To accelerate the application of intersectional genetics, we perform a brain-wide characterization of 13 Flp and tTA mouse driver lines and selected seven for further analysis based on expression of vesicular neurotransmitter transporters. Using selective Cre driver lines, we created more than 10 Cre/tTA combinational lines for cell type targeting and circuit analysis. We then used VGLUT-Cre/VGAT-Flp combinational lines to identify and map 30 brain regions containing neurons that co-express vesicular glutamate and gamma-aminobutyric acid (GABA) transporters, followed by tracing their projections with intersectional viral vectors. Focusing on the lateral habenula (LHb) as a target, we identified glutamatergic, GABAergic, or co-glutamatergic/GABAergic innervations from ∼40 brain regions. These data provide an important resource for the future application of intersectional strategies and expand our understanding of the neuronal subtypes in the brain.
Aguilar, K;Comes, G;Canal, C;Quintana, A;Sanz, E;Hidalgo, J;
PMID: 35770802 | DOI: 10.1002/glia.24234
Leigh syndrome is a mitochondrial disease characterized by neurodegeneration, neuroinflammation, and early death. Mice lacking NDUFS4, a mitochondrial complex I subunit (Ndufs4 KO mice), have been established as a good animal model for studying human pathology associated with Leigh syndrome. As the disease progresses, there is an increase in neurodegeneration and neuroinflammation, thereby leading to deteriorating neurological symptoms, including motor deficits, breathing alterations, and eventually, death of the animal. However, despite the magnitude of neuroinflammation associated with brain lesions, the role of neuroinflammatory pathways and their main cellular components have not been addressed directly as relevant players in the disease pathology. Here, we investigate the role of microglial cells, the main immune cells of the CNS, in Leigh-like syndrome pathology, by pharmacologically depleting them using the colony-stimulating factor 1 receptor antagonist PLX3397. Microglial depletion extended lifespan and delayed motor symptoms in Ndufs4 KO mice, likely by preventing neuronal loss. Next, we investigated the role of the major cytokine interleukin-6 (IL-6) in the disease progression. IL-6 deficiency partially rescued breathing abnormalities and modulated gliosis but did not extend the lifespan or rescue motor decline in Ndufs4 KO mice. The present results show that microglial accumulation is pathogenic, in a process independent of IL-6, and hints toward a contributing role of neuroinflammation in the disease of Ndufs4 KO mice and potentially in patients with Leigh syndrome.
Zhu, YB;Wang, Y;Hua, XX;Xu, L;Liu, MZ;Zhang, R;Liu, PF;Li, JB;Zhang, L;Mu, D;
PMID: 35167440 | DOI: 10.7554/eLife.68372
Long-lasting negative affections dampen enthusiasm for life, and dealing with negative affective states is essential for individual survival. The parabrachial nucleus (PBN) and thalamic paraventricular nucleus (PVT) are critical for modulating affective states in mice. However, the functional roles of PBN-PVT projections in modulating affective states remain elusive. Here, we show that PBN neurons send dense projection fibers to the PVT and form direct excitatory synapses with PVT neurons. Activation of the PBN-PVT pathway induces robust behaviors associated with negative affective states without affecting nociceptive behaviors. Inhibition of the PBN-PVT pathway reduces aversion-like and fear-like behaviors. Furthermore, the PVT neurons innervated by the PBN are activated by aversive stimulation, and activation of PBN-PVT projections enhances the neuronal activity of PVT neurons in response to the aversive stimulus. Consistently, activation of PVT neurons that received PBN-PVT projections induces anxiety-like behaviors. Thus, our study indicates that PBN-PVT projections modulate negative affective states in mice.
Jeon, H;Lee, H;Kwon, DH;Kim, J;Tanaka-Yamamoto, K;Yook, JS;Feng, L;Park, HR;Lim, YH;Cho, ZH;Paek, SH;Kim, J;
PMID: 35235786 | DOI: 10.1016/j.celrep.2022.110439
The subthalamic nucleus (STN) controls psychomotor activity and is an efficient therapeutic deep brain stimulation target in individuals with Parkinson's disease. Despite evidence indicating position-dependent therapeutic effects and distinct functions within the STN, the input circuit and cellular profile in the STN remain largely unclear. Using neuroanatomical techniques, we construct a comprehensive connectivity map of the indirect and hyperdirect pathways in the mouse STN. Our circuit- and cellular-level connectivities reveal a topographically graded organization with three types of indirect and hyperdirect pathways (external globus pallidus only, STN only, and collateral). We confirm consistent pathways into the human STN by 7 T MRI-based tractography. We identify two functional types of topographically distinct glutamatergic STN neurons (parvalbumin [PV+/-]) with synaptic connectivity from indirect and hyperdirect pathways. Glutamatergic PV+ STN neurons contribute to burst firing. These data suggest a complex interplay of information integration within the basal ganglia underlying coordinated movement control and therapeutic effects.
Studtmann, C;Ladislav, M;Topolski, MA;Safari, M;Swanger, SA;
PMID: 35219855 | DOI: 10.1016/j.nbd.2022.105672
Thalamocortical network dysfunction contributes to seizures and sleep deficits in Dravet syndrome (DS), an infantile epileptic encephalopathy, but the underlying molecular and cellular mechanisms remain elusive. DS is primarily caused by mutations in the SCN1A gene encoding the voltage-gated sodium channel NaV1.1, which is highly expressed in GABAergic reticular thalamus (nRT) neurons as well as glutamatergic thalamocortical neurons. We hypothesized that NaV1.1 haploinsufficiency alters somatosensory corticothalamic circuit function through both intrinsic and synaptic mechanisms in nRT and thalamocortical neurons. Using Scn1a heterozygous mice of both sexes aged P25-P30, we discovered reduced excitability of nRT neurons and thalamocortical neurons in the ventral posterolateral (VPL) thalamus, while thalamocortical ventral posteromedial (VPM) neurons exhibited enhanced excitability. NaV1.1 haploinsufficiency enhanced GABAergic synaptic input and reduced glutamatergic input to VPL neurons, but not VPM neurons. In addition, glutamatergic input to nRT neurons was reduced in Scn1a heterozygous mice. These findings introduce alterations in glutamatergic synapse function and aberrant glutamatergic neuron excitability in the thalamus as disease mechanisms in DS, which has been widely considered a disease of GABAergic neurons. This work reveals additional complexity that expands current models of thalamic dysfunction in DS and identifies new components of corticothalamic circuitry as potential therapeutic targets.
Pereira Luppi, M;Azcorra, M;Caronia-Brown, G;Poulin, JF;Gaertner, Z;Gatica, S;Moreno-Ramos, OA;Nouri, N;Dubois, M;Ma, YC;Ramakrishnan, C;Fenno, L;Kim, YS;Deisseroth, K;Cicchetti, F;Dombeck, DA;Awatramani, R;
PMID: 34758317 | DOI: 10.1016/j.celrep.2021.109975
Dopamine (DA) neurons in the ventral tier of the substantia nigra pars compacta (SNc) degenerate prominently in Parkinson's disease, while those in the dorsal tier are relatively spared. Defining the molecular, functional, and developmental characteristics of each SNc tier is crucial to understand their distinct susceptibility. We demonstrate that Sox6 expression distinguishes ventrally and dorsally biased DA neuron populations in the SNc. The Sox6+ population in the ventral SNc includes an Aldh1a1+ subset and is enriched in gene pathways that underpin vulnerability. Sox6+ neurons project to the dorsal striatum and show activity correlated with acceleration. Sox6- neurons project to the medial, ventral, and caudal striatum and respond to rewards. Moreover, we show that this adult division is encoded early in development. Overall, our work demonstrates a dual origin of the SNc that results in DA neuron cohorts with distinct molecular profiles, projections, and functions.
Expression of immunoglobulin constant domain genes in neurons of the mouse central nervous system
Scheurer, L;Das Gupta, RR;Saebisch, A;Grampp, T;Benke, D;Zeilhofer, HU;Wildner, H;
PMID: 34433614 | DOI: 10.26508/lsa.202101154
General consensus states that immunoglobulins are exclusively expressed by B lymphocytes to form the first line of defense against common pathogens. Here, we provide compelling evidence for the expression of two heavy chain immunoglobulin genes in subpopulations of neurons in the mouse brain and spinal cord. RNA isolated from excitatory and inhibitory neurons through ribosome affinity purification revealed Ighg3 and Ighm transcripts encoding for the constant (Fc), but not the variable regions of IgG3 and IgM. Because, in the absence of the variable immunoglobulin regions, these transcripts lack the canonical transcription initiation site used in lymphocytes, we screened for alternative 5' transcription start sites and identified a novel 5' exon adjacent to a proposed promoter element. Immunohistochemical, Western blot, and in silico analyses strongly support that these neuronal transcripts are translated into proteins containing four Immunoglobulin domains. Our data thus demonstrate the expression of two Fc-encoding genes Ighg3 and Ighm in spinal and supraspinal neurons of the murine CNS and suggest a hitherto unknown function of the encoded proteins.
Spatially patterned excitatory neuron subtypes and projections of the claustrum
Erwin, SR;Bristow, BN;Sullivan, KE;Kendrick, RM;Marriott, B;Wang, L;Clements, J;Lemire, AL;Jackson, J;Cembrowski, MS;
PMID: 34397382 | DOI: 10.7554/eLife.68967
The claustrum is a functionally and structurally complex brain region, whose very spatial extent remains debated. Histochemical-based approaches typically treat the claustrum as a relatively narrow anatomical region that primarily projects to the neocortex, whereas circuit-based approaches can suggest a broader claustrum region containing projections to the neocortex and other regions. Here, in the mouse, we took a bottom-up and cell-type-specific approach to complement and possibly unite these seemingly disparate conclusions. Using single-cell RNA-sequencing, we found that the claustrum comprises two excitatory neuron subtypes that are differentiable from the surrounding cortex. Multicolor retrograde tracing in conjunction with 12-channel multiplexed in situ hybridization revealed a core-shell spatial arrangement of these subtypes, as well as differential downstream targets. Thus, the claustrum comprises excitatory neuron subtypes with distinct molecular and projection properties, whose spatial patterns reflect the narrower and broader claustral extents debated in previous research. This subtype-specific heterogeneity likely shapes the functional complexity of the claustrum.