Häring M, Zeisel A, Hochgerner H, Rinwa P, Jakobsson JET, Lönnerberg P, La Manno G, Sharma N, Borgius L, Kiehn O, Lagerström MC, Linnarsson S, Ernfors P.
PMID: 29686262 | DOI: 10.1038/s41593-018-0141-1
The dorsal horn of the spinal cord is critical to processing distinct modalities of noxious and innocuous sensation, but little is known of the neuronal subtypes involved, hampering efforts to deduce principles governing somatic sensation. Here we used single-cell RNA sequencing to classify sensory neurons in the mouse dorsal horn. We identified 15 inhibitory and 15 excitatory molecular subtypes of neurons, equaling the complexity in cerebral cortex. Validating our classification scheme in vivo and matching cell types to anatomy of the dorsal horn by spatial transcriptomics reveals laminar enrichment for each of the cell types. Neuron types, when combined, define a multilayered organization with like neurons layered together. Employing our scheme, we find that heat and cold stimuli activate discrete sets of both excitatory and inhibitory neuron types. This work provides a systematic and comprehensive molecular classification of spinal cord sensory neurons, enabling functional interrogation of sensory processing.
Macpherson T, Mizoguchi H, Yamanaka A, Hikida T.
PMID: 30797970 | DOI: 10.1016/j.neuint.2019.02.011
The ventral pallidum (VP) is a critical component of the basal ganglia neurocircuitry regulating learning and decision making; however, its precise role in controlling associative learning of environmental stimuli conditioned to appetitive or aversive outcomes is still unclear. Here, we investigated the expression of preproenkephalin, a polypeptide hormone previously shown to be expressed in nucleus accumbens neurons controlling aversive learning, within GABAergic and glutamatergic VP neurons. Next, we explored the behavioral consequences of chemicogenetic inhibition or excitation of preproenkephalin-expressing VP neurons on associative learning of reward- or aversion-paired stimuli in autoshaping and inhibitory avoidance tasks, respectively. We reveal for the first time that preproenkephalin is expressed predominantly in GABAergic rather than glutamatergic VP neurons, and that excitation of these preproenkephalin-expressing VP neurons was sufficient to impair inhibitory avoidance learning. These findings indicate the necessity for inhibition of preproenkephalin-expressing VP neurons for avoidance learning, and suggest these neurons as a potential therapeutic target for psychiatric disorders associated with maladaptive aversive learning.
Science translational medicine
Huang, WC;Peng, Z;Murdock, MH;Liu, L;Mathys, H;Davila-Velderrain, J;Jiang, X;Chen, M;Ng, AP;Kim, T;Abdurrob, F;Gao, F;Bennett, DA;Kellis, M;Tsai, LH;
PMID: 37075128 | DOI: 10.1126/scitranslmed.abq1019
The neural circuits governing the induction and progression of neurodegeneration and memory impairment in Alzheimer's disease (AD) are incompletely understood. The mammillary body (MB), a subcortical node of the medial limbic circuit, is one of the first brain regions to exhibit amyloid deposition in the 5xFAD mouse model of AD. Amyloid burden in the MB correlates with pathological diagnosis of AD in human postmortem brain tissue. Whether and how MB neuronal circuitry contributes to neurodegeneration and memory deficits in AD are unknown. Using 5xFAD mice and postmortem MB samples from individuals with varying degrees of AD pathology, we identified two neuronal cell types in the MB harboring distinct electrophysiological properties and long-range projections: lateral neurons and medial neurons. lateral MB neurons harbored aberrant hyperactivity and exhibited early neurodegeneration in 5xFAD mice compared with lateral MB neurons in wild-type littermates. Inducing hyperactivity in lateral MB neurons in wild-type mice impaired performance on memory tasks, whereas attenuating aberrant hyperactivity in lateral MB neurons ameliorated memory deficits in 5xFAD mice. Our findings suggest that neurodegeneration may be a result of genetically distinct, projection-specific cellular dysfunction and that dysregulated lateral MB neurons may be causally linked to memory deficits in AD.
Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Yi, T;Wang, N;Huang, J;Wang, Y;Ren, S;Hu, Y;Xia, J;Liao, Y;Li, X;Luo, F;Ouyang, Q;Li, Y;Zheng, Z;Xiao, Q;Ren, R;Yao, Z;Tang, X;Wang, Y;Chen, X;He, C;Li, H;Hu, Z;
PMID: 36961096 | DOI: 10.1002/advs.202300189
Sevoflurane has been the most widely used inhaled anesthetics with a favorable recovery profile; however, the precise mechanisms underlying its anesthetic action are still not completely understood. Here the authors show that sevoflurane activates a cluster of urocortin 1 (UCN1+ )/cocaine- and amphetamine-regulated transcript (CART+ ) neurons in the midbrain involved in its anesthesia. Furthermore, growth hormone secretagogue receptor (GHSR) is highly enriched in sevoflurane-activated UCN1+ /CART+ cells and is necessary for sleep induction. Blockade of GHSR abolishes the excitatory effect of sevoflurane on UCN1+ /CART+ neurons and attenuates its anesthetic effect. Collectively, their data suggest that anesthetic action of sevoflurane necessitates the GHSR activation in midbrain UCN1+ /CART+ neurons, which provides a novel target including the nucleus and receptor in the field of anesthesia.
Furlan, A;Corona, A;Boyle, S;Sharma, R;Rubino, R;Habel, J;Gablenz, EC;Giovanniello, J;Beyaz, S;Janowitz, T;Shea, SD;Li, B;
PMID: 36266470 | DOI: 10.1038/s41593-022-01178-3
Obesity is a global pandemic that is causally linked to many life-threatening diseases. Apart from some rare genetic conditions, the biological drivers of overeating and reduced activity are unclear. Here, we show that neurotensin-expressing neurons in the mouse interstitial nucleus of the posterior limb of the anterior commissure (IPAC), a nucleus of the central extended amygdala, encode dietary preference for unhealthy energy-dense foods. Optogenetic activation of IPACNts neurons promotes obesogenic behaviors, such as hedonic eating, and modulates food preference. Conversely, acute inhibition of IPACNts neurons reduces feeding and decreases hedonic eating. Chronic inactivation of IPACNts neurons recapitulates these effects, reduces preference for sweet, non-caloric tastants and, furthermore, enhances locomotion and energy expenditure; as a result, mice display long-term weight loss and improved metabolic health and are protected from obesity. Thus, the activity of a single neuronal population bidirectionally regulates energy homeostasis. Our findings could lead to new therapeutic strategies to prevent and treat obesity.
Teng, S;Zhen, F;Wang, L;Schalchli, JC;Simko, J;Chen, X;Jin, H;Makinson, CD;Peng, Y;
PMID: 35961989 | DOI: 10.1038/s41467-022-32461-3
Understanding the neural mechanisms underlying sleep state transitions is a fundamental goal of neurobiology and important for the development of new treatments for insomnia and other sleep disorders. Yet, brain circuits controlling this process remain poorly understood. Here we identify a population of sleep-active glutamatergic neurons in the ventrolateral medulla (VLM) that project to the preoptic area (POA), a prominent sleep-promoting region, in mice. Microendoscopic calcium imaging demonstrate that these VLM glutamatergic neurons display increased activity during the transitions from wakefulness to Non-Rapid Eye Movement (NREM) sleep. Chemogenetic silencing of POA-projecting VLM neurons suppresses NREM sleep, whereas chemogenetic activation of these neurons promotes NREM sleep. Moreover, we show that optogenetic activation of VLM glutamatergic neurons or their projections in the POA initiates NREM sleep in awake mice. Together, our findings uncover an excitatory brainstem-hypothalamic circuit that controls the wake-sleep transitions.
Feng, C;Wang, Y;Zha, X;Cao, H;Huang, S;Cao, D;Zhang, K;Xie, T;Xu, X;Liang, Z;Zhang, Z;
PMID: 35675799 | DOI: 10.1016/j.cmet.2022.05.002
Homeostatic thermogenesis is an essential protective feature of endotherms. However, the specific neuronal types involved in cold-induced thermogenesis remain largely unknown. Using functional magnetic resonance imaging and in situ hybridization, we screened for cold-sensitive neurons and found preprodynorphin (PDYN)-expressing cells in the dorsal medial region of the ventromedial hypothalamus (dmVMH) to be a candidate. Subsequent in vivo calcium recording showed that cold temperature activates dmVMHPdyn neurons, whereas hot temperature suppresses them. In addition, optogenetic activation of dmVMHPdyn neurons increases the brown adipose tissue and core body temperature, heart rate, and blood pressure, whereas optogenetic inhibition shows opposite effects, supporting their role in homeostatic thermogenesis. Furthermore, we found that dmVMHPdyn neurons are linked to known thermoregulatory circuits. Importantly, dmVMHPdyn neurons also show activation during mouse social interaction, and optogenetic inhibition suppresses social interaction and associated hyperthermia. Together, our study describes dual functions of dmVMHPdyn neurons that allow coordinated regulation of body temperature and social behaviors.
Zhu, YB;Wang, Y;Hua, XX;Xu, L;Liu, MZ;Zhang, R;Liu, PF;Li, JB;Zhang, L;Mu, D;
PMID: 35167440 | DOI: 10.7554/eLife.68372
Long-lasting negative affections dampen enthusiasm for life, and dealing with negative affective states is essential for individual survival. The parabrachial nucleus (PBN) and thalamic paraventricular nucleus (PVT) are critical for modulating affective states in mice. However, the functional roles of PBN-PVT projections in modulating affective states remain elusive. Here, we show that PBN neurons send dense projection fibers to the PVT and form direct excitatory synapses with PVT neurons. Activation of the PBN-PVT pathway induces robust behaviors associated with negative affective states without affecting nociceptive behaviors. Inhibition of the PBN-PVT pathway reduces aversion-like and fear-like behaviors. Furthermore, the PVT neurons innervated by the PBN are activated by aversive stimulation, and activation of PBN-PVT projections enhances the neuronal activity of PVT neurons in response to the aversive stimulus. Consistently, activation of PVT neurons that received PBN-PVT projections induces anxiety-like behaviors. Thus, our study indicates that PBN-PVT projections modulate negative affective states in mice.
Russ, DE;Cross, RBP;Li, L;Koch, SC;Matson, KJE;Yadav, A;Alkaslasi, MR;Lee, DI;Le Pichon, CE;Menon, V;Levine, AJ;
PMID: 34588430 | DOI: 10.1038/s41467-021-25125-1
Single-cell RNA sequencing data can unveil the molecular diversity of cell types. Cell type atlases of the mouse spinal cord have been published in recent years but have not been integrated together. Here, we generate an atlas of spinal cell types based on single-cell transcriptomic data, unifying the available datasets into a common reference framework. We report a hierarchical structure of postnatal cell type relationships, with location providing the highest level of organization, then neurotransmitter status, family, and finally, dozens of refined populations. We validate a combinatorial marker code for each neuronal cell type and map their spatial distributions in the adult spinal cord. We also show complex lineage relationships among postnatal cell types. Additionally, we develop an open-source cell type classifier, SeqSeek, to facilitate the standardization of cell type identification. This work provides an integrated view of spinal cell types, their gene expression signatures, and their molecular organization.
Biological Psychiatry Global Open Science
Jiang, S;Zhang, H;Eiden, L;
| DOI: 10.1016/j.bpsgos.2023.04.001
Background The neuropeptide PACAP is a master regulator of central and peripheral stress responses, yet it is not clear how PACAP projections throughout the brain execute endocrine and behavioral stress responses. Methods We used AAV neuronal tracing, an acute restraint stress (ARS) paradigm, and intersectional genetics, in C57Bl6 mice, to identify PACAP-containing circuits controlling stress-induced behavior and endocrine activation. Results PACAP deletion from forebrain excitatory neurons, including a projection directly from medial prefrontal cortex (mPFC) to hypothalamus, impairs c-fos activation and CRH mRNA elevation in PVN after 2 hr of restraint, without affecting ARS-induced hypophagia, or c-fos elevation in non-hypothalamic brain. Elimination of PACAP within projections from lateral parabrachial nucleus to extended amygdala (EA), on the other hand, attenuates ARS-induced hypophagia, along with EA fos induction, without affecting ARS-induced CRH mRNA elevation in PVN. PACAP projections to EA terminate at PKCδ neurons in both central amygdala (CeA) and oval nuclei of bed nucleus of stria terminalis (BNSTov). Silencing of PKCδ neurons in CeA, but not in BNSTov, attenuates ARS-induced hypophagia. Experiments were carried out in mice of both sexes with n>5 per group. Conclusions A frontocortical descending PACAP projection controls PVN CRH mRNA production, to maintain hypothalamo-pituitary adrenal (HPA) axis activation, and regulate the endocrine response to stress. An ascending PACAPergic projection from eLPBn to PKCδ neurons in central amygdala regulates behavioral responses to stress. Defining two separate limbs of the acute stress response provides broader insight into the specific brain circuitry engaged by the psychogenic stress response.
Kathe, C;Skinnider, MA;Hutson, TH;Regazzi, N;Gautier, M;Demesmaeker, R;Komi, S;Ceto, S;James, ND;Cho, N;Baud, L;Galan, K;Matson, KJE;Rowald, A;Kim, K;Wang, R;Minassian, K;Prior, JO;Asboth, L;Barraud, Q;Lacour, SP;Levine, AJ;Wagner, F;Bloch, J;Squair, JW;Courtine, G;
PMID: 36352232 | DOI: 10.1038/s41586-022-05385-7
A spinal cord injury interrupts pathways from the brain and brainstem that project to the lumbar spinal cord, leading to paralysis. Here we show that spatiotemporal epidural electrical stimulation (EES) of the lumbar spinal cord<sup>1-3</sup> applied during neurorehabilitation<sup>4,5</sup> (EES<sup>REHAB</sup>) restored walking in nine individuals with chronic spinal cord injury. This recovery involved a reduction in neuronal activity in the lumbar spinal cord of humans during walking. We hypothesized that this unexpected reduction reflects activity-dependent selection of specific neuronal subpopulations that become essential for a patient to walk after spinal cord injury. To identify these putative neurons, we modelled the technological and therapeutic features underlying EES<sup>REHAB</sup> in mice. We applied single-nucleus RNA sequencing<sup>6-9</sup> and spatial transcriptomics<sup>10,11</sup> to the spinal cords of these mice to chart a spatially resolved molecular atlas of recovery from paralysis. We then employed cell type<sup>12,13</sup> and spatial prioritization to identify the neurons involved in the recovery of walking. A single population of excitatory interneurons nested within intermediate laminae emerged. Although these neurons are not required for walking before spinal cord injury, we demonstrate that they are essential for the recovery of walking with EES following spinal cord injury. Augmenting the activity of these neurons phenocopied the recovery of walking enabled by EES<sup>REHAB</sup>, whereas ablating them prevented the recovery of walking that occurs spontaneously after moderate spinal cord injury. We thus identified a recovery-organizing neuronal subpopulation that is necessary and sufficient to regain walking after paralysis. Moreover, our methodology establishes a framework for using molecular cartography to identify the neurons that produce complex behaviours.