Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for SLC17A6

ACD can configure probes for the various manual and automated assays for SLC17A6 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for Slc17a6 (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (6)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • Slc17a6 (79) Apply Slc17a6 filter
  • SLC32A1 (43) Apply SLC32A1 filter
  • Gad2 (22) Apply Gad2 filter
  • Gad1 (19) Apply Gad1 filter
  • Slc17a7 (17) Apply Slc17a7 filter
  • Sst (10) Apply Sst filter
  • TH (8) Apply TH filter
  • FOS (7) Apply FOS filter
  • PVALB (7) Apply PVALB filter
  • egfp (6) Apply egfp filter
  • CCK (6) Apply CCK filter
  • TAC1 (6) Apply TAC1 filter
  • Chat (6) Apply Chat filter
  • Pdyn (6) Apply Pdyn filter
  • Cre (6) Apply Cre filter
  • Gal (5) Apply Gal filter
  • Crh (5) Apply Crh filter
  • CARTPT (5) Apply CARTPT filter
  • vGlut2 (5) Apply vGlut2 filter
  • CALCA (4) Apply CALCA filter
  • Npy (4) Apply Npy filter
  • Tac2 (4) Apply Tac2 filter
  • Rbfox3 (3) Apply Rbfox3 filter
  • ESR1 (3) Apply ESR1 filter
  • Drd1a (3) Apply Drd1a filter
  • Oxtr (3) Apply Oxtr filter
  • Penk (3) Apply Penk filter
  • Reln (3) Apply Reln filter
  • SLC18A2 (3) Apply SLC18A2 filter
  • Phox2b (3) Apply Phox2b filter
  • Slc6a3 (3) Apply Slc6a3 filter
  • Nts (3) Apply Nts filter
  • Slc17a8 (3) Apply Slc17a8 filter
  • (-) Remove tdTomato filter tdTomato (3)
  • Slc17a6 (Vglut2) (3) Apply Slc17a6 (Vglut2) filter
  • Piezo2 (2) Apply Piezo2 filter
  • Rspo3 (2) Apply Rspo3 filter
  • CNR1 (2) Apply CNR1 filter
  • Mc4r (2) Apply Mc4r filter
  • DRD2 (2) Apply DRD2 filter
  • Gata3 (2) Apply Gata3 filter
  • GLP1R (2) Apply GLP1R filter
  • Scn1a (2) Apply Scn1a filter
  • AGRP (2) Apply AGRP filter
  • (-) Remove GFRA1 filter GFRA1 (2)
  • LYPD1 (2) Apply LYPD1 filter
  • Adcyap1 (2) Apply Adcyap1 filter
  • Camk2a (2) Apply Camk2a filter
  • Npy1r (2) Apply Npy1r filter
  • Grpr (2) Apply Grpr filter

Product

  • RNAscope Multiplex Fluorescent Assay (3) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope Fluorescent Multiplex Assay (2) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent v2 (1) Apply RNAscope Multiplex Fluorescent v2 filter

Research area

  • Neuroscience (5) Apply Neuroscience filter
  • Anxiety (1) Apply Anxiety filter
  • Behavior (1) Apply Behavior filter
  • Cardiovascular Disease (1) Apply Cardiovascular Disease filter
  • Development (1) Apply Development filter
  • Endocrinology (1) Apply Endocrinology filter
  • Nueroscience (1) Apply Nueroscience filter
  • Sleep (1) Apply Sleep filter

Category

  • Publications (6) Apply Publications filter
Distinct Ventral Pallidal Neural Populations Mediate Separate Symptoms of Depression

Cell.

2017 Jul 13

Knowland D, Lilascharoen V, Pacia CP, Shin S, Wang EH, Lim BK.
PMID: 28689640 | DOI: 10.1016/j.cell.2017.06.015

Major depressive disorder (MDD) patients display a common but often variable set of symptoms making successful, sustained treatment difficult to achieve. Separate depressive symptoms may be encoded by differential changes in distinct circuits in the brain, yet how discrete circuits underlie behavioral subsets of depression and how they adapt in response to stress has not been addressed. We identify two discrete circuits of parvalbumin-positive (PV) neurons in the ventral pallidum (VP) projecting to either the lateral habenula or ventral tegmental area contributing to depression. We find that these populations undergo different electrophysiological adaptations in response to social defeat stress, which are normalized by antidepressant treatment. Furthermore, manipulation of each population mediates either social withdrawal or behavioral despair, but not both. We propose that distinct components of the VP PV circuit can subserve related, yet separate depressive-like phenotypes in mice, which could ultimately provide a platform for symptom-specific treatments of depression.

Single-Nucleus RNA Sequencing of Developing and Mature Superior Colliculus Identifies Neuronal Diversity and Candidate Mediators of Circuit Assembly

bioRxiv : the preprint server for biology

2023 Feb 07

Ayupe, AC;Choi, JS;Beckedorff, F;Mccartan, R;Levay, K;Park, KK;
PMID: 36778361 | DOI: 10.1101/2023.02.01.526254

The superior colliculus (SC) is a sensorimotor structure in the midbrain that integrates input from multiple sensory modalities to initiate motor commands. It undergoes well-characterized steps of circuit assembly during development, rendering the mouse SC a popular model to study establishment and refinement of neural connectivity. Here we performed single nucleus RNA-sequencing analysis of the mouse SC isolated at various developmental time points. Our study provides a transcriptomic landscape of the cell types that comprise the SC across murine development with particular emphasis on neuronal heterogeneity. We used these data to identify Pax7 as a marker for an anatomically homogeneous population of GABAergic neurons. Lastly, we report a repertoire of genes differentially expressed across the different postnatal ages, many of which are known to regulate axon guidance and synapse formation. Our data provide a valuable resource for interrogating the mechanisms of circuit development, and identifying markers for manipulating specific SC neuronal populations and circuits.
Distinct serotonergic pathways to the amygdala underlie separate behavioral features of anxiety

Nature neuroscience

2022 Dec 01

Yu, XD;Zhu, Y;Sun, QX;Deng, F;Wan, J;Zheng, D;Gong, W;Xie, SZ;Shen, CJ;Fu, JY;Huang, H;Lai, HY;Jin, J;Li, Y;Li, XM;
PMID: 36446933 | DOI: 10.1038/s41593-022-01200-8

Anxiety-like behaviors in mice include social avoidance and avoidance of bright spaces. Whether these features are distinctly regulated is unclear. We demonstrate that in mice, social and anxiogenic stimuli, respectively, increase and decrease serotonin (5-HT) levels in basal amygdala (BA). In dorsal raphe nucleus (DRN), 5-HT∩vGluT3 neurons projecting to BA parvalbumin (DRN5-HT∩vGluT3-BAPV) and pyramidal (DRN5-HT∩vGluT3-BAPyr) neurons have distinct intrinsic properties and gene expression and respond to anxiogenic and social stimuli, respectively. Activation of DRN5-HT∩vGluT3→BAPV inhibits 5-HT release via GABAB receptors on serotonergic terminals in BA, inducing social avoidance and avoidance of bright spaces. Activation of DRN5-HT∩vGluT3→BA neurons inhibits two subsets of BAPyr neurons via 5-HT1A receptors (HTR1A) and 5-HT1B receptors (HTR1B). Pharmacological inhibition of HTR1A and HTR1B in BA induces avoidance of bright spaces and social avoidance, respectively. These findings highlight the functional significance of heterogenic inputs from DRN to BA subpopulations in the regulation of separate anxiety-related behaviors.
Cardiovascular baroreflex circuit moonlights in sleep control

Neuron

2022 Sep 23

Yao, Y;Barger, Z;Saffari Doost, M;Tso, CF;Darmohray, D;Silverman, D;Liu, D;Ma, C;Cetin, A;Yao, S;Zeng, H;Dan, Y;
PMID: 36170850 | DOI: 10.1016/j.neuron.2022.08.027

Sleep disturbances are strongly associated with cardiovascular diseases. Baroreflex, a basic cardiovascular regulation mechanism, is modulated by sleep-wake states. Here, we show that neurons at key stages of baroreflex pathways also promote sleep. Using activity-dependent genetic labeling, we tagged neurons in the nucleus of the solitary tract (NST) activated by blood pressure elevation and confirmed their barosensitivity with optrode recording and calcium imaging. Chemogenetic or optogenetic activation of these neurons promoted non-REM sleep in addition to decreasing blood pressure and heart rate. GABAergic neurons in the caudal ventrolateral medulla (CVLM)-a downstream target of the NST for vasomotor baroreflex-also promote non-REM sleep, partly by inhibiting the sympathoexcitatory and wake-promoting adrenergic neurons in the rostral ventrolateral medulla (RVLM). Cholinergic neurons in the nucleus ambiguous-a target of the NST for cardiac baroreflex-promoted non-REM sleep as well. Thus, key components of the cardiovascular baroreflex circuit are also integral to sleep-wake brain-state regulation.
Spatially patterned excitatory neuron subtypes and projections of the claustrum

eLife

2021 Aug 16

Erwin, SR;Bristow, BN;Sullivan, KE;Kendrick, RM;Marriott, B;Wang, L;Clements, J;Lemire, AL;Jackson, J;Cembrowski, MS;
PMID: 34397382 | DOI: 10.7554/eLife.68967

The claustrum is a functionally and structurally complex brain region, whose very spatial extent remains debated. Histochemical-based approaches typically treat the claustrum as a relatively narrow anatomical region that primarily projects to the neocortex, whereas circuit-based approaches can suggest a broader claustrum region containing projections to the neocortex and other regions. Here, in the mouse, we took a bottom-up and cell-type-specific approach to complement and possibly unite these seemingly disparate conclusions. Using single-cell RNA-sequencing, we found that the claustrum comprises two excitatory neuron subtypes that are differentiable from the surrounding cortex. Multicolor retrograde tracing in conjunction with 12-channel multiplexed in situ hybridization revealed a core-shell spatial arrangement of these subtypes, as well as differential downstream targets. Thus, the claustrum comprises excitatory neuron subtypes with distinct molecular and projection properties, whose spatial patterns reflect the narrower and broader claustral extents debated in previous research. This subtype-specific heterogeneity likely shapes the functional complexity of the claustrum.
Characterisation of the relaxin family peptide 3 receptor system in the mouse bed nucleus of the stria terminalis.

J Comp Neurol.

2019 Apr 04

Ch'ng SS, Fu J, Brown RM, Smith C, Hossain MA, McDougall SJ, Lawrence AJ.
PMID: 30947365 | DOI: 10.1002/cne.24695

The bed nucleus of the stria terminalis (BNST) is a critical node involved in stress and reward-related behaviors. Relaxin family peptide receptor 3 (RXFP3) signaling in the BNST has been implicated in stress-induced alcohol seeking behavior. However, the neurochemical phenotype and connectivity of BNST RXFP3-expressing (RXFP3+) cells have yet to be elucidated. We interrogated the molecular signature and electrophysiological properties of BNST RXFP3+ neurons using a RXFP3-Cre reporter mouse line. BNST RXFP3+ cells are circumscribed to the dorsal BNST (dBNST) and are neurochemically heterogeneous, comprising a mix of inhibitory and excitatory neurons. Immunohistochemistry revealed that ~48% of BNST RXFP3+ neurons are GABAergic, and a quarter of these co-express the calcium-binding protein, calbindin. A subset of BNST RXFP3+ cells (~41%) co-express CaMKIIα, suggesting this subpopulation of BNST RXFP3+ neurons are excitatory. Corroborating this, RNAscope™ revealed that ~35% of BNST RXFP3+ cells express vVGluT2 mRNA, indicating a subpopulation of RXFP3+ neurons are glutamatergic. RXFP3+ neurons show direct hyperpolarization to bath application of a selective RXFP3 agonist, RXFP3-A2, while around 50% of cells were depolarised by exogenous corticotrophin releasing factor. In behaviorally naive mice the majority of RXFP3+ neurons were Type II cells exhibiting Ih and T type calcium mediated currents. However, chronic swim stress caused persistent plasticity, decreasing the proportion of neurons that express these channels. These studies are the first to characterize the BNST RXFP3 system in mouse and lay the foundation for future functional studies appraising the role of the murine BNST RXFP3 system in more complex behaviors.

X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?