Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for STAT3

ACD can configure probes for the various manual and automated assays for STAT3 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for STAT3 (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (2)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (6) Apply TBD filter
  • STAT3 (3) Apply STAT3 filter
  • BCL2 (1) Apply BCL2 filter
  • Serpine1 (1) Apply Serpine1 filter
  • DDIT3 (1) Apply DDIT3 filter
  • Itga6 (1) Apply Itga6 filter
  • Prdm1 (1) Apply Prdm1 filter
  • Gata3 (1) Apply Gata3 filter
  • FGF19 (1) Apply FGF19 filter
  • Lgr5 (1) Apply Lgr5 filter
  • GLI1 (1) Apply GLI1 filter
  • IL23A (1) Apply IL23A filter
  • Atf4 (1) Apply Atf4 filter
  • IL-10 (1) Apply IL-10 filter
  • Atf3 (1) Apply Atf3 filter
  • LEPR (1) Apply LEPR filter
  • H19 (1) Apply H19 filter
  • Runx1 (1) Apply Runx1 filter
  • Vgf (1) Apply Vgf filter
  • Gpr55 (1) Apply Gpr55 filter
  • Olig2 (1) Apply Olig2 filter
  • SIV (1) Apply SIV filter
  • Gadd45a (1) Apply Gadd45a filter
  • DEFA5 (1) Apply DEFA5 filter
  • (-) Remove CXCL14 filter CXCL14 (1)
  • Birc5 (1) Apply Birc5 filter
  • VGAT (1) Apply VGAT filter
  • VEGF (1) Apply VEGF filter
  • Il-6 (1) Apply Il-6 filter
  • Cre (1) Apply Cre filter
  • CD44 (1) Apply CD44 filter
  • OLFM4 (1) Apply OLFM4 filter
  • 16S (1) Apply 16S filter
  • PAI-1 (1) Apply PAI-1 filter
  • TBET (1) Apply TBET filter
  • STAT1 (1) Apply STAT1 filter
  • Lnc-BM (1) Apply Lnc-BM filter
  • Tgf-β1 (1) Apply Tgf-β1 filter
  • (-) Remove SLUG filter SLUG (1)
  • lincRNA-p21 (1) Apply lincRNA-p21 filter
  • SARS-CoV-2 (1) Apply SARS-CoV-2 filter
  • H2az2 (1) Apply H2az2 filter
  • CAR (1) Apply CAR filter
  • PDGF (1) Apply PDGF filter
  • mesothelin (1) Apply mesothelin filter
  • CD34/SMAct (1) Apply CD34/SMAct filter
  • SARS-CoV-2 S (1) Apply SARS-CoV-2 S filter
  • L-6 (1) Apply L-6 filter
  • LEISA (1) Apply LEISA filter

Product

  • RNAscope (1) Apply RNAscope filter
  • RNAscope Multiplex Fluorescent Assay (1) Apply RNAscope Multiplex Fluorescent Assay filter

Research area

  • Cancer (1) Apply Cancer filter
  • Metabolism (1) Apply Metabolism filter
  • Obesity (1) Apply Obesity filter

Category

  • Publications (2) Apply Publications filter
LepRb cell-specific deletion of Slug mitigates obesity and NAFLD

The Journal of clinical investigation

2022 Dec 13

Kim, MH;Li, Y;Zheng, Q;Jiang, L;Myers, MG;Wu, WS;Rui, L;
PMID: 36512408 | DOI: 10.1172/JCI156722

Leptin exerts its biological actions by activating LepRb. LepRb signaling impairment and leptin resistance are believed to cause obesity. Transcription factor Slug (also known as Snai2) recruits epigenetic modifiers and regulates gene expression by an epigenetic mechanism; however, its epigenetic action has not been explored in leptin resistance. Here, we uncover a pro-obesity function of neuronal Slug. Hypothalamic Slug was upregulated in obese mice. LepRb cell-specific Slug knockout (SlugΔLepRb) mice were resistant to diet-induced obesity, type 2 diabetes, and liver steatosis, accompanied by decreased food intake and increased fat thermogenesis. Leptin stimulated hypothalamic Stat3 phosphorylation and weight loss to a significantly higher level in SlugΔLepRb than in Slugf/f mice even before their body weight divergence. Conversely, hypothalamic LepRb neuron-specific overexpression of Slug, mediated by AAV-DIO-Slug transduction, induced leptin resistance, obesity, and metabolic disorders in mice on a chow diet. At the genomic level, Slug bound to and repressed the LepRb promoter, thereby inhibiting LepRb transcription. Consistently, Slug deficiency decreased LepRb promoter histone 3 lysine-27 methylations, repressive epigenetic marks, and increased LepRb mRNA levels in the hypothalamus. Collectively, these results unravel a previously-unrecognized hypothalamic neuronal Slug/epigenetic reprogramming/leptin resistance axis that promotes energy imbalance, obesity, and metabolic disease.
Dysregulation of CXCL14 promotes malignant phenotypes of esophageal squamous carcinoma cells via regulating SRC and EGFR signaling

Biochemical and biophysical research communications

2022 Apr 04

Guo, J;Chang, C;Yang, LY;Cai, HQ;Chen, DX;Zhang, Y;Cai, Y;Wang, JJ;Wei, WQ;Hao, JJ;Wang, MR;
PMID: 35421632 | DOI: 10.1016/j.bbrc.2022.03.144

The present study was to identify abnormal methylation genes implicated in esophageal squamous cell carcinoma (ESCC). Genomic methylation alterations in ESCC tissues were analyzed using laser-microdissection and whole-genome bisulfite sequencing. CXCL14 promoter was frequently hypermethylated in ESCC tissues. The correlation of CXCL14 hypermethylation status and the mRNA and protein expression levels were validated using nested methylation-specific PCR (nMS-PCR), RNAscope in situ hybridization (RISH) and Western blot. RISH results showed completely negative CXCL14 expression in 34.3% (34/99) ESCC, compared with those in the basal layer cells of normal epithelia. Low expression of CXCL14 was more present in patients with lower differentiation. The anticancer role of CXCL14 has been commonly associated with immune regulation in the literature. Here, we observed by functional analysis that CXCL14 can also act as a tumor suppressor in ESCC cells. 5-Aza-dC treatment suppressed CXCL14 methylation and up-regulated the expression of CXCL14. Ectopic expression of CXCL14 suppressed the proliferation, invasion, tumor growth, and lung metastasis of ESCC cells. Both ectopic expression and induction of CXCL14 with 5-Aza-dC inhibited the activity of SRC, MEK1/2 and STAT3 in ESCC cells, while activated EGFR. Importantly, a combination of CXCL14 expression and SRC or EGFR inhibitor dramatically repressed the proliferation of ESCC cells and the growth of xenografts. Our findings revealed a direct tumor suppressor role of CXCL14, but not through the immune system. The data suggest that for ESCC patients with low level CXCL14, increasing CXCL14 expression combined with inhibition of SRC or EGFR might be a promising therapeutic strategy.
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?