Translational Oncology (2019)
Tamma R, Ingravallo G, Albano F, Gaudio F, Annese T, Ruggieri S, Lorusso L, Errede M, Maiorano E, Specchia G, Ribatti D.
| DOI: 10.1016/j.tranon.2018.12.008
BACKGROUND: Diffuse large B-cell lymphoma (DLBCL) is the most common form of non-Hodgkin's lymphoma. Signal transducer and activator of transcription 3 (STAT3) is a cytoplasmic transcription with many important functions, including regulation of cell proliferation, differentiation, survival, angiogenesis, and immune response. MATERIALS AND METHODS: In this study, we have compared by means of RNAscope technology STAT3 RNA expression in human DLBCL in a selected group of activated B-cell–like DLBCL (ABC-DLBCL) patients with another group of germinal center B-cell–like DLBCL (GBC-DLBCL) patients. RESULTS: The results have shown that ABC DLBCL tissue samples contained a significantly higher number of STAT3-positive cells as compared with GCB tissue samples. Moreover, by means of confocal immunofluorescence analysis, we have observed that tumor vessels in ABC samples appeared lined by endothelial cells expressing both FVIII and STAT3 signals, while in GCB samples, only few vessels coexpressed FVIII and STAT3. CONCLUSIONS: These data confirm other reports showing that STAT3 is highly expressed and activated in ABC-DLBCL and our previously published data demonstrating that, in primary central nervous system lymphoma, tumor vessels appeared lined by endothelial cells expressing both FVIII and STAT3.
Annese T, Ingravallo G, Tamma R, De Giorgis M, Maiorano E, Perrone T, Albano F, Specchia G, Ribatti D
PMID: 32120334 | DOI: 10.1016/j.tranon.2020.100744
Mantle cell lymphoma (MCL) is an aggressive and rare B-cell non-Hodgkin lymphoma classified in two clinicopathological subtypes according to SOX11 expression and mutation state of immunoglobulin variable region heavy chain (IgVH) gene. The transcription factor SOX11, overexpressed in 78%-93% of MCL patients, plays a central role in modulating tumor microenvironment prosurvival signals and angiogenic genes. In this work, we have explored the lymph node microenvironment of three subgroups of MCL patients classified according to SOX11 expression as negative, light, and strong. CD34+ microvessels, CD4+ and CD8+ T-lymphocytes, CD68+ and CD163+ macrophages, and the oncogene p53 expression were evaluated by immunohistochemistry. Moreover, STAT3 mRNA expression was analyzed by RNA-scope assay. Our results confirmed increased angiogenesis in the sample of patients positive to SOX11 compared to the negative ones and demonstrated that angiogenesis and SOX11 expression positively correlate to a higher T-lymphocytes inflammatory infiltrate. On the contrary, angiogenesis and SOX11 expression negatively correlate with macrophage's inflammatory infiltrate and p53 expression. STAT3 mRNA expression level was not relevant concerning angiogenesis or SOX11 expression. Overall, our data indicate that, in MCL, SOX11 expression is associated with increased angiogenesis and a high CD4+ and CD8+ T-cell infiltration, which are not sustained by CD163+ macrophages infiltrate and p53 expression
Chidamide induces apoptosis in DLBCL cells by suppressing the HDACs/STAT3/Bcl‑2 pathway
Molecular medicine reports
Zhang, H;Chi, F;Qin, K;Mu, X;Wang, L;Yang, B;Wang, Y;Bai, M;Li, Z;Su, L;Yu, B;
PMID: 33649847 | DOI: 10.3892/mmr.2021.11947
Diffuse large B‑cell lymphoma (DLBCL) is a highly heterogeneous malignant tumor type, and epigenetic modifications such as acetylation or deacetylation serve vital roles in its development. Chidamide, a novel histone deacetylase inhibitor, exerts an anticancer effect against various types of cancer. The present study aimed to evaluate the cellular effect of chidamide on a number of DLBCL cell lines and to investigate its underlying mechanism. The results demonstrated that chidamide induced the death of these cells in a concentration‑(0‑30 µmol/l) and time‑dependent (24‑72 h) manner, as determined using the Cell Counting Kit‑8 cell viability assay. Moreover, chidamide promoted cellular apoptosis, which was identified via flow cytometry and western blot analysis, with an increase in cleaved caspase‑3 expression and a decrease in Bcl‑2 expression. Chidamide treatment also decreased the expression level of STAT3 and its phosphorylation, which was accompanied by the downregulation of a class‑I histone deacetylase (HDAC) inhibitor, chidamide. Collectively, these data suggested that chidamide can be a potent therapeutic agent to treat DLBCL by inducing the apoptotic death of DLBCL cells by inhibiting the HDACs/STAT3/Bcl‑2 pathway.
Lu, Y;Chen, X;Liu, X;Shi, Y;Wei, Z;Feng, L;Jiang, Q;Ye, W;Sasaki, T;Fukunaga, K;Ji, Y;Han, F;Lu, YM;
PMID: 36588318 | DOI: 10.1080/15548627.2022.2162244
Cognitive impairment caused by systemic chemotherapy is a critical question that perplexes the effective implementation of clinical treatment, but related molecular events are poorly understood. Herein, we show that bortezomib exposure leads to microglia activation and cognitive impairment, this occurs along with decreased nuclear translocation of TFEB (transcription factor EB), which is linked to macroautophagy/autophagy disorder, STAT3 (signal transducer and activator of transcription 3) phosphorylation and IL23A (interleukin 23 subunit alpha) expression. Pharmacological enhancement of TFEB nuclear translocation by digoxin restores lysosomal function and reduces STAT3-dependent endothelial IL23A secretion. As a consequence, we found that brain endothelial-specific ablation of Il23a ameliorated both microglia activation and cognitive dysfunction. Thus, the endothelial TFEB-STAT3-IL23A axis in the brain represents a critical cellular event for initiating bortezomib-mediated aberrant microglial activation and synapse engulfment. Our results suggest the reversal of TFEB nuclear translocation may provide a novel therapeutic approach to prevent symptoms of cognitive dysfunction during clinical use of bortezomib.Abbreviations: AAV: adeno-associated virus; BBB: blood-brain barrier; BTZ: bortezomib; DG: digoxin; DGs: dentate gyrus; DLG4/PSD95: discs large MAGUK scaffold protein 4; HBMECs: human brain microvascular endothelial cells; HP: hippocampus; IL23A: interleukin 23 subunit alpha; MBVECs: mouse brain vascular endothelial cells; mPFC: medial prefrontal cortex; NORT: novel object recognition test; OLT: object location test; PLX5622: 6-fluoro-N-([5-fluoro-2-methoxypyridin-3-yl]methyl)-5-(5-methyl-1H-pyrrolo[2,3-b]pyridin-3- yl)methyl; PPP3/calcineurin: protein phosphatase 3; SBEs: STAT3 binding elements; shRNA: small hairpin RNA; SLC17A7/VGLUT1: solute carrier family 17 member 7; SLC32A1/VGAT: solute carrier family 32 member 1; STAT3: signal transducer and activator of transcription 3, TFEB: transcription factor EB; Ub: ubiquitin.