ACD can configure probes for the various manual and automated assays for S100B for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Cell research
2021 May 19
Wang, K;Wang, S;Chen, Y;Wu, D;Hu, X;Lu, Y;Wang, L;Bao, L;Li, C;Zhang, X;
PMID: 34012074 | DOI: 10.1038/s41422-021-00503-y
Neuroscience letters
2022 Jan 20
Seaberg, BL;Purao, S;Rimer, M;
PMID: 35065247 | DOI: 10.1016/j.neulet.2022.136468
Cell Rep.
2017 Aug 22
Martinez-Moreno M, O'Shea TM, Zepecki JP, Olaru A, Ness JK, Langer R, Tapinos N.
PMID: 28834756 | DOI: 10.1016/j.celrep.2017.07.068
Precise regulation of Egr2 transcription is fundamentally important to the control of peripheral myelination. Here, we describe a long non-coding RNA antisense to the promoter of Egr2 (Egr2-AS-RNA). During peripheral nerve injury, the expression of Egr2-AS-RNA is increased and correlates with decreased Egr2 transcript and protein levels. Ectopic expression of Egr2-AS-RNA in dorsal root ganglion (DRG) cultures inhibits the expression of Egr2 mRNA and induces demyelination. In vivo inhibition of Egr2-AS-RNA using oligonucleotide GapMers released from a biodegradable hydrogel following sciatic nerve injury reverts the EGR2-mediated gene expression profile and significantly delays demyelination. Egr2-AS-RNA gradually recruits H3K27ME3, AGO1, AGO2, and EZH2 on the Egr2 promoter following sciatic nerve injury. Furthermore, expression of Egr2-AS-RNA is regulated through ERK1/2 signaling to YY1, while loss of Ser184 of YY1 regulates binding to Egr2-AS-RNA. In conclusion, we describe functional exploration of an antisense long non-coding RNA in peripheral nervous system (PNS) biology.
JCI insight
2023 Feb 02
Cotellessa, L;Marelli, F;Duminuco, P;Adamo, M;Papadakis, GE;Bartoloni, L;Sato, N;Lang-Muritano, M;Troendle, A;Dhillo, WS;Morelli, A;Guarnieri, G;Pitteloud, N;Persani, L;Bonomi, M;Giacobini, P;Vezzoli, V;
PMID: 36729644 | DOI: 10.1172/jci.insight.161998
Mol Cell Endocrinol.
2017 Oct 03
Lu M, Kjellin H, Fotouhi O, Lee L, Nilsson IL, Haglund F, Höög A, Lehtiö J, Larsson C.
PMID: 28986304 | DOI: 10.1016/j.mce.2017.10.001
Abstract
CONTEXT:
Parathyroid adenomas may be composed of chief cells (conventional or water-clear), oxyphilic cells or a mixture of both cells. The molecular background is rarely studied.
OBJECTIVE:
To molecularly characterize parathyroid adenomas of different cell type composition.
DESIGN:
Chief and oxyphilic cell adenomas were compared in a cohort of 664 sporadic cases. Extensive analyses of parathyroid tissueswere performed in subgroup. Gene expressions of known parathyroid-related genes were quantified by qRT-PCR. Protein expression profiles determined by liquid chromatography - tandem mass spectrometry (LC-MS/MS) were compared between each type of parathyroid adenomas. Selected proteins were analysed by Western blot and immunohistochemistry.
RESULTS:
Patients with oxyphilic cell adenoma were found to be older at the time of operation than chief cell adenoma cases but did not differ in gender, serum calcium or tumor weight. The gene expression of CASR, VDR, FGFR1, CYP27B1, CYP24A1, PTHLH, GCM2, NDUFA13, CDKN1B, MEN1 and CNND1 did not differ between the groups. VDR protein levels were weaker in oxyphilic adenomas. The proteomic studies identified a set of novel dysregulated proteins of interest such as nuclear receptor subfamily 2 group C member 2 (TR4), LIM domain only protein 3 (LMO3) and calcium-binding protein B (S100B). LMO3 and S100B showed higher expression in oxyphilic adenoma and may be involve in parathyroid tumorgenesis through the p53 pathway. TR4 showed different subcellular localisation between adenoma and normal rim.
CONCLUSION:
Chief and oxyphilic cell parathyroid adenomas have partly overlapping but also distinct molecular profiles. The calmodulin-eEF2K, TR4 and p53 pathways may be involved in the tumor development.
Gene Expr Patterns.
2020 Feb 18
Pook C, Ahrens JM, Clagett-Dame M
PMID: 32081718 | DOI: 10.1016/j.gep.2020.119099
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com