ACD can configure probes for the various manual and automated assays for PIEZO2 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Cell Rep.
2017 Dec 05
Szczot M, Pogorzala LA, Solinski HJ, Young L, Yee P, Le Pichon CE, Chesler AT, Hoon MA.
PMID: 29212024 | DOI: 10.1016/j.celrep.2017.11.035
Piezo2 is a mechanically activated ion channel required for touch discrimination, vibration detection, and proprioception. Here, we discovered that Piezo2 is extensively spliced, producing different Piezo2 isoforms with distinct properties. Sensory neurons from both mice and humans express a large repertoire of Piezo2 variants, whereas non-neuronal tissues express predominantly a single isoform. Notably, even within sensory ganglia, we demonstrate the splicing of Piezo2 to be cell type specific. Biophysical characterization revealed substantial differences in ion permeability, sensitivity to calcium modulation, and inactivation kinetics among Piezo2 splice variants. Together, our results describe, at the molecular level, a potential mechanism by which transduction is tuned, permitting the detection of a variety of mechanosensory stimuli.
Molecular neurobiology
2023 May 25
Liu, L;Zhao, Y;An, W;Zhao, M;Ding, N;Liu, H;Ge, N;Wen, J;Zhang, X;Zu, S;Sun, W;
PMID: 37227654 | DOI: 10.1007/s12035-023-03386-9
Hypertension research : official journal of the Japanese Society of Hypertension
2023 Feb 21
Ochiai, K;Mochida, Y;Nagase, T;Fukuhara, H;Yamaguchi, Y;Nagase, M;
PMID: 36810623 | DOI: 10.1038/s41440-023-01219-9
Pain
2021 Jun 17
Shin, SM;Moehring, F;Itson-Zoske, B;Fan, F;Stucky, CL;Hogan, QH;Yu, H;
PMID: 34285153 | DOI: 10.1097/j.pain.0000000000002356
Scientific reports
2022 Mar 10
Mochida, Y;Ochiai, K;Nagase, T;Nonomura, K;Akimoto, Y;Fukuhara, H;Sakai, T;Matsumura, G;Yamaguchi, Y;Nagase, M;
PMID: 35273307 | DOI: 10.1038/s41598-022-07987-7
Sci Transl Med. 2018 Oct 10;10(462).
2018 Oct 10
Murthy SE, Loud MC, Daou I, Marshall KL, Schwaller F, Kühnemund J, Francisco AG, Keenan WT, Dubin AE, Lewin GR, Patapoutian A.
PMID: 30305457 | DOI: 10.1126/scitranslmed.aat9897
Nature.
2016 Dec 21
Nonomura K, Woo SH, Chang RB, Gillich A, Qiu Z, Francisco AG, Ranade SS, Liberles SD, Patapoutian A.
PMID: 28002412 | DOI: 10.1038/nature20793
Respiratory dysfunction is a notorious cause of perinatal mortality in infants and sleep apnoea in adults, but the mechanisms of respiratory control are not clearly understood. Mechanical signals transduced by airway-innervating sensory neurons control respiration; however, the physiological significance and molecular mechanisms of these signals remain obscured. Here we show that global and sensory neuron-specific ablation of the mechanically activated ion channel Piezo2 causes respiratory distress and death in newborn mice. Optogenetic activation of Piezo2+ vagal sensory neurons causes apnoea in adult mice. Moreover, induced ablation of Piezo2 in sensory neurons of adult mice causes decreased neuronal responses to lung inflation, an impaired Hering-Breuer mechanoreflex, and increased tidal volume under normal conditions. These phenotypes are reproduced in mice lacking Piezo2 in the nodose ganglion. Our data suggest that Piezo2 is an airway stretch sensor and that Piezo2-mediated mechanotransduction within various airway-innervating sensory neurons is critical for establishing efficient respiration at birth and maintaining normal breathing in adults.
J Dent Res.
2017 Apr 01
Won J, Vang H, Lee PR, Kim YH, Kim HW, Kang Y, Oh SB.
PMID: 28388364 | DOI: 10.1177/0022034517702342
Mechanosensitive ion channels have been suggested to be expressed in dental primary afferent (DPA) neurons to transduce the movement of dentinal fluid since the proposal of hydrodynamic theory. Piezo2, a mechanosensitive, rapidly inactivating (RI) ion channel, has been recently identified in dorsal root ganglion (DRG) neurons to mediate tactile transduction. Here, we examined the expression of Piezo2 in DPA neurons by in situ hybridization, single-cell reverse transcriptase polymerase chain reaction, and whole-cell patch-clamp recordings. DPA neurons with Piezo2 messenger RNA (mRNA) or Piezo2-like currents were further characterized based on their neurochemical and electrophysiological properties. Piezo2 mRNA was found mostly in medium- to large-sized DPA neurons, with the majority of these neurons also positive for Nav1.8, CGRP, and NF200, whereas only a minor population was positive for IB4 and peripherin. Whole-cell patch-clamp recordings revealed Piezo2-like, RI currents evoked by mechanical stimulation in a subpopulation of DPA neurons. RI currents were pharmacologically blocked by ruthenium red, a compound known to block Piezo2, and were also reduced by small interfering RNA-mediated Piezo2 knockdown. Piezo2-like currents were observed almost exclusively in IB4-negative DPA neurons, with the current amplitude larger in capsaicin-insensitive DPA neurons than the capsaicin-sensitive population. Our findings show that subpopulation of DPA neurons is indeed mechanically sensitive. Within this subpopulation of mechanosensitive DPA neurons, we have identified the Piezo2 ion channel as a potential transducer for mechanical stimuli, contributing to RI inward currents. Piezo2-positive DPA neurons were characterized as medium- to large-sized neurons with myelinated A-fibers, containing nociceptive peptidergic neurotransmitters.
Cell reports
2023 Mar 22
Lu, P;Zhao, Y;Xie, Z;Zhou, H;Dong, X;Wu, GF;Kim, BS;Feng, J;Hu, H;
PMID: 36961815 | DOI: 10.1016/j.celrep.2023.112283
Cell Rep.
2019 Feb 05
Zhang M, Wang Y, Geng J, Zhou S, Xiao B.
PMID: 30726728 | DOI: 10.1016/j.celrep.2019.01.056
Touch and mechanical pain represent distinct, but interactive, modalities of mechanosensation. However, the molecular mechanisms underlying these mechanotransduction processes remain incompletely understood. Here, we show that deletion of the mechanically activated and rapidly adapting Piezo2 channel in a portion of the low-threshold mechanoreceptors and a majority of the IB4-positive nociceptors impairs touch but sensitizes mechanical pain in mice. Ectopic expression of the Piezo2 homolog, the intermediately adapting Piezo1 channel, in sensory neurons can sensitize touch in normal mice and rescue defective touch of the Piezo2-knockout mice. Broad expression of Piezo1 in sensory neurons decreases, rather than evokes, mechanical pain responses. Together, our data suggest that Piezo channels can mediate touch and indirectly suppress acute pain. Tuning Piezo-mediated touch sensitivity allows us to recapitulate the inhibitory effect of touch on acute pain in mouse models.
Nat Neurosci.
2015 Nov 09
Woo SH, Lukacs V, de Nooij JC, Zaytseva D, Criddle CR, Francisco A, Jessell TM, Wilkinson KA, Patapoutian A.
PMID: 26551544 | DOI: 10.1038/nn.4162.
Proprioception, the perception of body and limb position, is mediated by proprioceptors, specialized mechanosensory neurons that convey information about the stretch and tension experienced by muscles, tendons, skin and joints. In mammals, the molecular identity of the stretch-sensitive channel that mediates proprioception is unknown. We found that the mechanically activated nonselective cation channel Piezo2 was expressed in sensory endings of proprioceptors innervating muscle spindles and Golgi tendon organs in mice. Two independent mouse lines that lack Piezo2 in proprioceptive neurons showed severely uncoordinated body movements and abnormal limb positions. Moreover, the mechanosensitivity of parvalbumin-expressing neurons that predominantly mark proprioceptors was dependent on Piezo2 expression in vitro, and the stretch-induced firing of proprioceptors in muscle-nerve recordings was markedly reduced in Piezo2-deficient mice. Together, our results indicate that Piezo2 is the major mechanotransducer of mammalian proprioceptors.
Nature. 2014 Dec 4;516(7529):121-5.
Ranade SS, Woo SH, Dubin AE, Moshourab RA, Wetzel C, Petrus M, Mathur J, Bégay V, Coste B, Mainquist J, Wilson AJ, Francisco AG, Reddy K, Qiu Z, Wood JN, Lewin GR, Patapoutian A.
PMID: 25471886 | DOI: 10.1038/nature13980.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com