ACD can configure probes for the various manual and automated assays for PTEN for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Eur J Cancer.
2016 Jul 28
Wartenberg M, Centeno I, Haemmig S, Vassella E, Zlobec I, Galván JA, Neuenschwander M, Schlup C, Gloor B, Lugli A, Perren A, Karamitopoulou E.
PMID: 27475963 | DOI: 10.1016/j.ejca.2016.06.013
Cell discovery
2021 Dec 14
Liang, L;Huan, L;Wang, J;Wu, Y;Huang, S;He, X;
PMID: 34903728 | DOI: 10.1038/s41421-021-00339-1
Genes Dev. 2014 Dec 29.
Li N, Zhang Y, Han X, Liang K, Wang J, Feng L, Wang W, Songyang Z, Lin C, Yang L, Yu Y, Chen J.
PMID: 25547115
Human Pathology.
2015 Sep 23
Bingham B, Ong CW, James J, Maxwell P, Waugh D, Salto-Tellez M, McQuaid S.
PMID: - | DOI: dx.doi.org/10.1016/j.humpath.2015.09.009
Immunohistochemical staining for Phosphatase and Tensin Homolog (PTEN) does not have either an acceptable standard protocol or concordance of scoring between pathologists. Evaluation of PTEN mRNA with a unique and verified sequence probe may offer a realistic alternative providing a robust and reproducible protocol. In this study we have evaluated an in situ hybridization (ISH) protocol for PTEN mRNA using RNAScope technology and compared it with a standard protocol for PTEN immunohistochemistry (IHC). PTEN mRNA expression by ISH was consistently more sensitive than PTEN IHC with 56% of samples on a mixed tumour tissue microarray (TMA) showing high expressionby ISH compared to 42% by IHC. On a prostate TMA 49% of cases showed high expression by ISH compared to 43% by IHC. Variations in PTEN mRNA expression within malignant epithelium were quantifiable using image analysis on the prostate TMAs. Within tumours clear over expression of PTEN mRNA on malignant epithelium compared to benign epithelium was frequently observed and quantified. The use of Spot Studio software in the mixed tumour TMA allowed for clear demonstration of varying levels of PTEN mRNA between tumour samples by the mRNA methodology. This was evident by the quantifiable differences between distinct oropharyngeal tumours (upto 3 fold increase in average number of spots per cell between 2 cases). mRNA detection of PTEN or other biomarkers, for which optimal or standardized immunohistochemical techniques are not available, represents a means by which heterogeneity of expression within focal regions of tumour can be explored with more confidence.
Cell communication and signaling : CCS
2022 Nov 21
Yokoi, A;Minami, M;Hashimura, M;Oguri, Y;Matsumoto, T;Hasegawa, Y;Nakagawa, M;Ishibashi, Y;Ito, T;Ohhigata, K;Harada, Y;Fukagawa, N;Saegusa, M;
PMID: 36411429 | DOI: 10.1186/s12964-022-00999-w
J Pathol.
2017 Jun 28
Gao Y, Lin P, Lydon JP, Li Q.
PMID: 28657664 | DOI: 10.1002/path.4930
Although a putative role for TGF beta (TGFB) signaling in the pathogenesis of human endometrial cancer has long been proposed, the precise function of TGFB signaling in the development and progression of endometrial cancer remains elusive. Depletion of PTEN in the mouse uterus causes endometrial cancer. To identify the potential role of TGFB signaling in endometrial cancer, we simultaneously deleted TGFB receptor 1 (Tgfbr1) and Pten in the mouse uterus using Cre-recombinase driven by the progesterone receptor (termed Ptend/d ; Tgfbr1d/d ). We found that Ptend/d ; Tgfbr1d/d mice developed severe endometrial lesions that progressed more rapidly compared with those resulting from conditional deletion of Pten alone, suggesting that TGFB signaling synergizes with PTEN to suppress endometrial cancer progression. Remarkably, the Ptend/d ; Tgfbr1d/d mice developed distant pulmonary metastases, leading to significantly reduced life span. The development of metastasis and accelerated tumor progression in Ptend/d ; Tgfbr1d/d mice are associated with increased production of pro-inflammatory chemokines, enhanced cancer cell motility evidenced by myometrial invasion and disruption, and altered tumor microenvironment characterized by recruitment of tumor-associated macrophages. Thus, conditional deletion of Tgfbr1 in PTEN-inactivated endometrium leads to a disease that recapitulates invasive and lethal human endometrial cancer. This mouse model may be valuable for preclinical testing of new cancer therapies, particularly those targeting metastasis, one of the hallmarks of cancer and a major cause of death in endometrial cancer patients.
Horm Cancer. 2015 Jan 29.
Higgins J, Brogley M, Palanisamy N, Mehra R, Ittmann MM, Li JZ, Tomlins SA, Robins DM.
PMID: 25631336
Cancer Res
2018 Mar 26
Pearson HB, Li J, Meniel VS, Fennell CM, Waring P, Montgomery KG, Rebello RJ, Macpherson AA, Koushyar S, Furic L, Cullinane C, Clarkson RW, Smalley MJ, Simpson KJ, Phesse TJ, Shepherd PR, Humbert PO, Sansom OJ, Phillips WA.
PMID: 29581176 | DOI: 10.1158/2159-8290.CD-17-0867
Genetic alterations that potentiate PI3K signalling are frequent in prostate cancer, yet how different genetic drivers of the PI3K cascade contribute to prostate cancer is unclear. Here, we report PIK3CA mutation/amplification correlates with poor prostate cancer patient survival. To interrogate the requirement of different PI3K genetic drivers in prostate cancer, we employed a genetic approach to mutate Pik3ca in mouse prostate epithelium. We show Pik3caH1047R mutation causes p110α-dependent invasive prostate carcinoma in-vivo. Furthermore, we report PIK3CA mutation and PTEN loss co-exist in prostate cancer patients, and can cooperate in-vivo to accelerate disease progressionvia AKT-mTORC1/2 hyperactivation. Contrasting single mutants that slowly acquire castration-resistant prostate cancer (CRPC), concomitant Pik3ca mutation and Pten loss caused de-novo CRPC. Thus, Pik3ca mutation and Pten deletion are not functionally redundant. Our findings indicate that PIK3CA mutation is an attractive prognostic indicator for prostate cancer that may cooperate with PTEN loss to facilitate CRPC in patients.
Cell Death Dis.
2019 Feb 27
Huang H, Miao L, Yang L, Liang F, Wang Q, Zhuang P, Sun Y, Hu Y.
PMID: 30814515 | DOI: 10.1038/s41419-018-1289-z
Phosphatase and tensin homolog (PTEN) acts as a brake for the phosphatidylinositol 3-kinase-AKT-mTOR complex 1 (mTORC1) pathway, the deletion of which promotes potent central nervous system (CNS) axon regeneration. Previously, we demonstrated that AKT activation is sufficient to promote CNS axon regeneration to a lesser extent than PTEN deletion. It is still questionable whether AKT is entirely responsible for the regenerative effect of PTEN deletion on CNS axons. Here, we show that blocking AKT or its downstream effectors, mTORC1 and GSK3β, significantly reduces PTEN deletion-induced mouse optic nerve regeneration, indicating the necessary role of AKT-dependent signaling. However, AKT is only marginally activated in PTEN-null mice due to mTORC1-mediated feedback inhibition. That combining PTEN deletion with AKT overexpression or GSK3β deletion achieves significantly more potent axonal regeneration suggests an AKT-independent pathway for axon regeneration. Elucidating the AKT-independent pathway is required to develop effective strategies for CNS axon regeneration.
Animals
2021 Jul 12
Kim, S;Seung, B;Cho, S;Lim, H;Bae, M;Sur, J;
| DOI: 10.3390/ani11072079
Human Pathology
2017 May 10
Ronen S, Abbott DW, Kravtsov O, Abdelkader A, Xub Y, Banerjee A, Iczkowski KA.
PMID: - | DOI: 10.1016/j.humpath.2017.04.024
The presence and extent of cribriform pattern of prostate cancer portend recurrence and cancer death. Therelative expressions within this morphology of the prognostically adverse loss of PTEN, and the downstream inactivation of cell cycle inhibitor p27/Kip1 had been uncertain. In this study, we examined 52 cases of cribriform cancer by immunohistochemistry (IHC) for PTEN, p27, and CD44 variant (v)7/8, and a subset of 17 casesby chromogenic in situ hybridization (ISH) using probe for PTEN or CDKN1B (gene for p27). The fractions of epithelial pixels positive by IHC and ISH were digitally assessed for benign acini, high grade prostatic intraepithelial neoplasia (PIN), and 8 morphological patterns of cancer. Immunostaining results demonstrated that: 1. PTEN loss was significant for fused small acini, cribriform-central cells, small cribriform acini, and Gleason grade 5 cells in comparison with other acini. 2. p27 loss was significant only for cribriform-peripheral cells; and borderline-significant for fused small acini in comparison with benign acini. 3. CD44v7/8 showed expression loss in cribriform-peripheral cells; other comparisons were not significant. ISH showed thatcribriform cancer had significant PTEN loss normalized to benign acini (P < .02), while Gleason 3 cancer or fused small acini did not. With CDKN1B, the degree of signal loss among various cancer morphologies was insignificant. In conclusion, molecular disparities emerged between the fused small acini and cribriform patterns of Gleason 4 cancer. PTEN or p27 loss as prognostic factors demand distinct assessment in the varieties of Gleason 4 cancer, and in the biphenotypic peripheral versus central populations in cribriform structures.
Prostate.
2018 May 30
Markowski MC, Hubbard GK, Hicks JL, Zheng Q, King A, Esopi D, Rege A, Yegnasubramanian S, Bieberich CJ, De Marzo AM.
PMID: 29851094 | DOI: 10.1002/pros.23657
Abstract
BACKGROUND:
Loss or mutation of PTEN alleles at 10q23 in combination with 8q24 amplification (encompassing MYC) are common findings in aggressive, human prostate cancer. Our group recently developed a transgenic murine model of prostate cancer involving prostate-specific Pten deletion and forced expression of MYC under the control of the Hoxb13 promoter. MYC overexpression cooperated with Pten loss to recapitulate lethal, human prostate cancer.
METHOD:
We now report on the generation of two mouse prostate cancer cell lines, BMPC1 and BMPC2, derived from a lymph node, and liver metastasis, respectively.
RESULTS:
Both cell lines demonstrate a phenotype consistent with adenocarcinoma and grew under standard tissue culture conditions. Androgen receptor (AR) protein expression is minimal (BMPC1) or absent (BMPC2) consistent with AR loss observed in the BMPC mouse model of invasive adenocarcinoma. Growth in media containing charcoal-stripped serum resulted in an increase in AR mRNA in BMPC1 cells with no effect on protein expression, unless androgens were added, in which case AR protein was stabilized, and showed nuclear localization. AR expression in BMPC2 cells was not effected by growth media or treatment with androgens. Treatment with an anti-androgen/castration or androgen supplemented media did not affect in vitro or in vivo growth of either cell line, irrespective of nuclear AR detection.
DISCUSSION:
These cell lines are a novel model of androgen-insensitive prostatic adenocarcinoma driven by MYC over-expression and Pten loss.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com