Combined single-molecule fluorescence in situ hybridization and immunohistochemistry analysis in intact murine dorsal root ganglia and sciatic nerve
Li, X;Eadara, S;Jeon, S;Liu, Y;Muwanga, G;Qu, L;Caterina, MJ;Meffert, MK;
PMID: 34142098 | DOI: 10.1016/j.xpro.2021.100555
Single-molecule fluorescence in situ hybridization (smFISH) allows spatial mapping of gene expression. This protocol presents advances in smFISH fidelity and flexibility in intact murine sensory nervous system tissue. An approach using RNAscope probes allows multiplexing, enhanced target specificity, and immunohistochemistry compatibility. Computational strategies increase quantification accuracy of mRNA puncta with a point spread function for clustered transcripts in the dorsal root ganglion and 3D masking for intermingled sciatic nerve cell types. Approaches are validated for mRNAs of modest (Lin28a) and medium (Ppib) steady-state abundance in neurons.
Jerome, K;Sattar, S;Mehedi, M;
PMID: 36779029 | DOI: 10.1016/j.mex.2023.102050
Visualizing and quantifying mRNA and its corresponding protein provides a unique perspective of gene expression at a single-molecule level. Here, we describe a method for differentiating primary cells for making airway epithelium and detecting SARS-CoV-2 Spike (S) mRNA and S protein in the paraformaldehyde-fixed paraffin-embedded severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infected airway epithelium. For simultaneous detection of mRNA and protein in the same cell, we combined two protocols: 1. RNA fluorescence-based in situ hybridization (RNA-FISH) based mRNA detection and 2. fluorescence-based immunohistochemistry (IHC) based protein detection. The detection of mRNA and proteins in the same cell also allows for quantifying them using the open-source software QuPath, which provides an accurate and more straightforward fluorescent-based quantification of mRNA and protein in the microscopic images of the infected cells. Additionally, we can achieve the subcellular distribution of both S mRNA and S protein. This method identifies SARS-CoV-2 S gene products' (mRNA and protein) degree of expression and their subcellular localization in the infected airway epithelium. Advantages of this method include: •Simultaneous detection and quantification of mRNA and protein in the same cell.•Universal use due to the ability to use mRNA-specific primer-probe and protein-specific antibodies.•An open-source software QuPath provides a straightforward fluorescent-based quantification.
Rodrigo Albors, A;Singer, GA;Llorens-Bobadilla, E;Frisén, J;May, AP;Ponting, CP;Storey, KG;
PMID: 36706756 | DOI: 10.1016/j.devcel.2023.01.003
The adult spinal cord stem cell potential resides within the ependymal cell population and declines with age. Ependymal cells are, however, heterogeneous, and the biological diversity this represents and how it changes with age remain unknown. Here, we present a single-cell transcriptomic census of spinal cord ependymal cells from adult and aged mice, identifying not only all known ependymal cell subtypes but also immature as well as mature cell states. By comparing transcriptomes of spinal cord and brain ependymal cells, which lack stem cell abilities, we identify immature cells as potential spinal cord stem cells. Following spinal cord injury, these cells re-enter the cell cycle, which is accompanied by a short-lived reversal of ependymal cell maturation. We further analyze ependymal cells in the human spinal cord and identify widespread cell maturation and altered cell identities. This in-depth characterization of spinal cord ependymal cells provides insight into their biology and informs strategies for spinal cord repair.
Expression of immunoglobulin constant domain genes in neurons of the mouse central nervous system
Scheurer, L;Das Gupta, RR;Saebisch, A;Grampp, T;Benke, D;Zeilhofer, HU;Wildner, H;
PMID: 34433614 | DOI: 10.26508/lsa.202101154
General consensus states that immunoglobulins are exclusively expressed by B lymphocytes to form the first line of defense against common pathogens. Here, we provide compelling evidence for the expression of two heavy chain immunoglobulin genes in subpopulations of neurons in the mouse brain and spinal cord. RNA isolated from excitatory and inhibitory neurons through ribosome affinity purification revealed Ighg3 and Ighm transcripts encoding for the constant (Fc), but not the variable regions of IgG3 and IgM. Because, in the absence of the variable immunoglobulin regions, these transcripts lack the canonical transcription initiation site used in lymphocytes, we screened for alternative 5' transcription start sites and identified a novel 5' exon adjacent to a proposed promoter element. Immunohistochemical, Western blot, and in silico analyses strongly support that these neuronal transcripts are translated into proteins containing four Immunoglobulin domains. Our data thus demonstrate the expression of two Fc-encoding genes Ighg3 and Ighm in spinal and supraspinal neurons of the murine CNS and suggest a hitherto unknown function of the encoded proteins.
Highly Sensitive and Multiplexed In Situ RNA Profiling with Cleavable Fluorescent Tyramide
Xiao, L;Labaer, J;Guo, J;
PMID: 34063986 | DOI: 10.3390/cells10061277
Understanding the composition, regulation, and function of complex biological systems requires tools that quantify multiple transcripts at their native cellular locations. However, the current multiplexed RNA imaging technologies are limited by their relatively low sensitivity or specificity, which hinders their applications in studying highly autofluorescent tissues, such as formalin-fixed paraffin-embedded (FFPE) tissues. To address this issue, here we develop a multiplexed in situ RNA profiling approach with a high sensitivity and specificity. In this approach, transcripts are first hybridized by target-specific oligonucleotide probes in pairs. Only when these two independent probes hybridize to the target in tandem will the subsequent signal amplification by oligonucleotide hybridization occur. Afterwards, horseradish peroxidase (HRP) is applied to further amplify the signal and stain the target with cleavable fluorescent tyramide (CFT). After imaging, the fluorophores are chemically cleaved and the hybridized probes are stripped by DNase and formamide. Through cycles of RNA staining, fluorescence imaging, signal cleavage, and probe stripping, many different RNA species can be profiled at the optical resolution. In applying this approach, we demonstrated that multiplexed in situ RNA analysis can be successfully achieved in both fixed, frozen, and FFPE tissues.
FC 017DEEP-LEARNING ENABLED QUANTIFICATION OF SINGLE-CELL SINGLE-MRNA TRANSCRIPTS AND CORRELATIVE SUPER-RESOLVED PODOCYTE FOOT PROCESS MORPHOMETRY IN ROUTINE KIDNEY BIOPSY SPECIMEN
Nephrology Dialysis Transplantation
Siegerist, F;Hay, E;Dang, J;Mahtal, N;Tharaux, P;Zimmermann, U;Ribback, S;Dombrowski, F;Endlich, K;Endlich, N;
| DOI: 10.1093/ndt/gfab138.003
Background and Aims Although high-throughput single-cell transcriptomic analysis, super-resolution light microscopy and deep-learning methods are broadly used, the gold-standard to evaluate kidney biopsies is still the histologic assessment of formalin-fixed and paraffin embedded (FFPE) samples with parallel ultrastructural evaluation. Recently, we and others have shown that super-resolution fluorescence microscopy can be used to study glomerular ultrastructure in human biopsy samples. Additionally, in the last years mRNA in situ hybridization techniques have been improved to increase specificity and sensitivity to enable transcriptomic analysis with single-mRNA resolution (smFISH). Method For smFISH, we used the fluorescent multiplex RNAscope kit with probes targeting ACE2, WT1, PPIB, UBC and POLR2A. To find an on-slide reference gene, the normfinder algorithm was used. The smFISH protocol was combined with a single-step anti-podocin immunofluorescence enabled by VHH nanobodies. Podocytes were labeled by tyramide-signal amplified immunofluorescence using recombinant anti-WT1 antibodies. Slides were imaged using confocal laser scanning, as well as 3D structured illumination microscopy. Deep-learning networks to segment glomeruli and cell nuclei (UNet and StarDist) were trained using the ZeroCostDL4Mic approach. Scripts to automate analysis were developed in the ImageJ1 macro language. Results First, we show robust functionality of threeplex smFISH in archived routine FFPE kidney biopsy samples with single-mRNA resolution. As variations in sample preparation can negatively influence mRNA-abundance, we established PPIB as an ideal on-slide reference gene to account for different RNA-integrities present in biopsy samples. PPIB was chosen for its most stable expression in microarray dataset of various glomerular diseases determined by the Normfinder algorithm as well as its smFISH performance. To segment glomeruli and to label glomerular and tubulointerstitial cell subsets, we established a combination of smFISH and immunofluorescence. As smFISH requires intense tissue digestion to liberate cross-linked RNAs, immunofluorescence protocols had to be adapted: For podocin, a small-sized single-step label approach enabled by small nanobodies and for WT1, tyramide signal amplification was used. For enhanced segmentation performance, we used deep learning: First, a network was customized to recognize DAPI+ cell nuclei and WT1/DAPI+ podocyte nuclei. Second, a UNet was trained to segment glomeruli in podocin-stained tissue sections. Using these segmentation masks, we could annotate PPIB-normalized single mRNA transcripts to individual cells. We established an ImageJ script to automatize transcript quantification. As a proof-of-principle, we demonstrate inverse expression of WT1 and ACE2 in glomerular vs. tubulointerstitial single cells. Furthermore, in the podocyte subset, WT1 highly clustered whereas no significant ACE2 expression was found under baseline conditions. Additionally, when imaged with super-resolution microscopy, podocyte filtration slit morphology could be visualized The optical resolution was around 125 nm and therefore small enough to resolve individual foot processes. The filtration slit density as a podocyte-integrity marker did not differ significantly from undigested tissue sections proving the suitability for correlative podocyte foot process morphometry with single-podocyte transcript analysis. Conclusion Here we present a modular toolbox which combines algorithms for multiplexed, normalized single-cell gene expression with single mRNA resolution in cellular subsets (glomerular, tubulointerstitial and podocytes). Additionally, this approach enables correlation with podocyte filtration slit ultrastructure and gross glomerular morphometry.
Greguske, EA;Maroto, AF;Borrajo, M;Palou, A;Gut, M;Esteve-Codina, A;Barrallo-Gimeno, A;Llorens, J;
PMID: 37100209 | DOI: 10.1016/j.nbd.2023.106134
The vestibular ganglion contains primary sensory neurons that are postsynaptic to the transducing hair cells (HC) and project to the central nervous system. Understanding the response of these neurons to HC stress or loss is of great interest as their survival and functional competence will determine the functional outcome of any intervention aiming at repair or regeneration of the HCs. We have shown that subchronic exposure to the ototoxicant 3,3'-iminodipropionitrile (IDPN) in rats and mice causes a reversible detachment and synaptic uncoupling between the HCs and the ganglion neurons. Here, we used this paradigm to study the global changes in gene expression in vestibular ganglia using RNA-seq. Comparative gene ontology and pathway analyses of the data from both model species indicated a robust downregulation of terms related to synapses, including presynaptic and postsynaptic functions. Manual analyses of the most significantly downregulated transcripts identified genes with expressions related to neuronal activity, modulators of neuronal excitability, and transcription factors and receptors that promote neurite growth and differentiation. For choice selected genes, the mRNA expression results were replicated by qRT-PCR, validated spatially by RNA-scope, or were demonstrated to be associated with decreased expression of the corresponding protein. We conjectured that decreased synaptic input or trophic support on the ganglion neurons from the HC was triggering these expression changes. To support this hypothesis, we demonstrated decreased expression of BDNF mRNA in the vestibular epithelium after subchronic ototoxicity and also downregulated expression of similarly identified genes (e.g Etv5, Camk1g, Slc17a6, Nptx2, Spp1) after HC ablation with another ototoxic compound, allylnitrile. We conclude that vestibular ganglion neurons respond to decreased input from HCs by decreasing the strength of all their synaptic contacts, both as postsynaptic and presynaptic players.
Bresciani, N;Demagny, H;Lemos, V;Pontanari, F;Li, X;Sun, Y;Li, H;Perino, A;Auwerx, J;Schoonjans, K;
PMID: 35714811 | DOI: 10.1016/j.jhep.2022.05.040
Transporters of the SLC25 mitochondrial carrier superfamily bridge cytoplasmic and mitochondrial metabolism by channeling metabolites across mitochondrial membranes and are pivotal for metabolic homeostasis. Despite their physiological relevance as gatekeepers of cellular metabolism, most of the SLC25 family members remain uncharacterized. We undertook a comprehensive tissue distribution analysis of all Slc25 family members across metabolic organs and identified SLC25A47 as a liver-specific mitochondrial carrier.We used a murine loss-of-function model to unravel the role of this transporter in mitochondrial and hepatic homeostasis. We performed extensive metabolic phenotyping and molecular characterization of newly generated Slc25a47hep-/- and Slc25a47-Fgf21hep-/- mice.Slc25a47hep-/- mice displayed a wide variety of metabolic abnormalities, as a result of sustained energy deficiency in the liver originating from impaired mitochondrial respiration in this organ. This mitochondrial phenotype was associated with an activation of the mitochondrial stress response (MSR) in the liver, and the development of fibrosis, which was exacerbated upon feeding a high-fat high-sucrose diet. The MSR induced the secretion of several mitokines, amongst which FGF21 played a preponderant role on systemic physiology. To dissect the FGF21-dependent and -independent physiological changes induced in Slc25a47hep-/- mice, we generated a double Slc25a47-Fgf21hep-/- mouse model and demonstrated that several aspects of the hypermetabolic state were driven by hepatic secretion of FGF21. On the other hand, the metabolic fuel inflexibility observed in Slc25a47hep-/- mice could not be rescued with the genetic removal of Fgf21.Collectively, our data place SLC25A47 at the center of mitochondrial homeostasis, which upon dysfunction triggers robust liver-specific and systemic adaptive stress responses. The prominent role of SLC25A47 in hepatic fibrosis identifies this carrier, or its transported metabolite, as a potential target for therapeutic intervention.SLC25A47 is a liver-specific mitochondrial carrier. Slc25a47hep-/- mice are unable to maintain mitochondrial homeostasis in hepatocytes and show impaired mitochondrial respiration resulting in chronic energy deficiency, mitochondrial stress, and fibrosis in hepatocytes. Hepatic mitochondrial stress is characterized by the secretion of the mitokine FGF21 which drives a strong and systemic hypermetabolic state impacting whole-body physiology.