ACD can configure probes for the various manual and automated assays for POMC for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Cell Rep.
2018 Oct 09
Timper K, Paeger L, Sánchez-Lasheras C, Varela L, Jais A, Nolte H, Vogt MC, Hausen AC, Heilinger C, Evers N, Pospisilik JA, Penninger JM, Taylor EB, Horvath TL, Kloppenburg P, Brüning JC.
PMID: 30304679 | DOI: 10.1016/j.celrep.2018.09.034
Mitochondrial oxidative phosphorylation (OXPHOS) and substrate utilization critically regulate the function of hypothalamic proopiomelanocortin (POMC)-expressing neurons. Here, we demonstrate that inactivation of apoptosis-inducing factor (AIF) in POMC neurons mildly impairs mitochondrial respiration and decreases firing of POMC neurons in lean mice. In contrast, under diet-induced obese conditions, POMC-Cre-specific inactivation of AIF prevents obesity-induced silencing of POMC neurons, translating into improved glucose metabolism, improved leptin, and insulin sensitivity, as well as increased energy expenditure in AIFΔPOMC mice. On a cellular level, AIF deficiency improves mitochondrial morphology, facilitates the utilization of fatty acids for mitochondrial respiration, and increases reactive oxygen species (ROS) formation in POMC neurons from obese mice, ultimately leading to restored POMC firing upon HFD feeding. Collectively, partial impairment of mitochondrial function shifts substrate utilization of POMC neurons from glucose to fatty acid metabolism and restores their firing properties, resulting in improved systemic glucose and energy metabolism in obesity.
eLife
2022 Jan 19
Yu, H;Rubinstein, M;Low, MJ;
PMID: 35044906 | DOI: 10.7554/eLife.72883
Endocrinology
2022 Jan 01
Téblick, A;De Bruyn, L;Van Oudenhove, T;Vander Perre, S;Pauwels, L;Derde, S;Langouche, L;Van den Berghe, G;
PMID: 34698826 | DOI: 10.1210/endocr/bqab222
JCI insight
2022 Nov 08
Gaziano, I;Corneliussen, S;Biglari, N;Neuhaus, R;Shen, L;Sotelo-Hitschfeld, T;Klemm, P;Steuernagel, L;De Solis, AJ;Chen, W;Wunderlich, FT;Kloppenburg, P;Brüning, JC;
PMID: 36345942 | DOI: 10.1172/jci.insight.162753
Molecular Metabolism
2018 Nov 20
Tooke BP, Yu H, Adams JM, Jones GL, Sutton-Kennedy T, Mundada L, Qi NR, Low MJ, Chhabra KH.
PMID: - | DOI: 10.1016/j.molmet.2018.11.004
Life-threatening hypoglycemia is a major limiting factor in the management of diabetes. While it is known that counterregulatory responses to hypoglycemia are impaired in diabetes, molecular mechanisms underlying the reduced responses remain unclear. Given the established roles of the hypothalamic proopiomelanocortin (POMC)/melanocortin 4 receptor (MC4R) circuit in regulating sympathetic nervous system (SNS) activity and the SNS in stimulating counterregulatory responses to hypoglycemia, we hypothesized that hypothalamic POMC as well as MC4R, a receptor for POMC derived melanocyte stimulating hormones, is required for normal hypoglycemia counterregulation.
To test the hypothesis, we induced hypoglycemia or glucopenia in separate cohorts of mice deficient in either POMC or MC4R in the arcuate nucleus (ARC) or the paraventricular nucleus of the hypothalamus (PVH), respectively, and measured their circulating counterregulatory hormones. In addition, we performed a hyperinsulinemic-hypoglycemic clamp study to further validate the function of MC4R in hypoglycemia counterregulation. We also measured Pomc and Mc4r mRNA levels in the ARC and PVH, respectively, in the streptozotocin-induced type 1 diabetes mouse model and non-obese diabetic (NOD) mice to delineate molecular mechanisms by which diabetes deteriorates the defense systems against hypoglycemia. Finally, we treated diabetic mice with the MC4R agonist MTII, administered stereotaxically into the PVH, to determine its potential for restoring the counterregulatory response to hypoglycemia in diabetes.
Stimulation of epinephrine and glucagon release in response to hypoglycemia or glucopenia was diminished in both POMC- and MC4R-deficient mice, relative to their littermate controls. Similarly, the counterregulatory response was impaired in association with decreased hypothalamic Pomc and Mc4r expression in the diabetic mice, a phenotype that was not reversed by insulin treatment which normalized glycemia. In contrast, infusion of an MC4R agonist in the PVH restored the counterregulatory response in diabetic mice.
In conclusion, hypothalamic Pomc as well as Mc4r, both of which are reduced in type 1 diabetic mice, are required for normal counterregulatory responses to hypoglycemia. Therefore, enhancing MC4R function may improve hypoglycemia counterregulation in diabetes.
Cell metabolism
2021 Jul 27
Gómez-Valadés, AG;Pozo, M;Varela, L;Boudjadja, MB;Ramírez, S;Chivite, I;Eyre, E;Haddad-Tóvolli, R;Obri, A;Milà-Guasch, M;Altirriba, J;Schneeberger, M;Imbernón, M;Garcia-Rendueles, AR;Gama-Perez, P;Rojo-Ruiz, J;Rácz, B;Alonso, MT;Gomis, R;Zorzano, A;D'Agostino, G;Alvarez, CV;Nogueiras, R;Garcia-Roves, PM;Horvath, TL;Claret, M;
PMID: 34343501 | DOI: 10.1016/j.cmet.2021.07.008
Cell metabolism
2022 Feb 01
Ramírez, S;Haddad-Tóvolli, R;Radosevic, M;Toledo, M;Pané, A;Alcolea, D;Ribas, V;Milà-Guasch, M;Pozo, M;Obri, A;Eyre, E;Gómez-Valadés, AG;Chivite, I;Van Eeckhout, T;Zalachoras, I;Altirriba, J;Bauder, C;Imbernón, M;Garrabou, G;Garcia-Ruiz, C;Nogueiras, R;Soto, D;Gasull, X;Sandi, C;Brüning, JC;Fortea, J;Jiménez, A;Fernández-Checa, JC;Claret, M;
PMID: 35108514 | DOI: 10.1016/j.cmet.2021.12.023
Int J Obes (Lond)
2019 Jun 05
Dieterle V, Herzer S, Gröne HJ, Jennemann R, Nordström V.
PMID: 31168055 | DOI: 10.1038/s41366-019-0388-y
Glucosylceramide synthase (GCS; gene: UDP-glucose:ceramide glucosyltransferase (Ugcg))-derived gangliosides comprise a specific class of lipids in the plasma membrane that modulate the activity of transmembrane receptors. GCS deletion in hypothalamic arcuate nucleus (Arc) neurons leads to prominent obesity. However, it has not yet been studied how ganglioside depletion affects individual Arc neuronal subpopulations. The current study investigates the effects of GCS deletion specifically in anorexigenic pro-opiomelanocortin (POMC) neurons. Additionally, we investigate insulin receptor (IR) signaling and phosphatidylinositol-(3,4,5)-trisphosphate (PIP3) binding to ATP-dependent K+ (KATP) channels of GCS-deficient POMC neurons.
We generated Ugcgf/f-Pomc-Cre mice with ganglioside deficiency in POMC neurons. Moreover, the CRISPR (clustered regulatory interspaced short palindromic repeats)/Cas9 technology was used to inhibit GCS-dependent ganglioside biosynthesis in cultured mouse POMC neurons, yielding UgcgΔ-mHypoA-POMC cells that were used to study mechanistic aspects in further detail. Proximity ligation assays (PLAs) visualized interactions between gangliosides, IR, and KATP channel subunit sulfonylurea receptor-1 (SUR-1), as well as intracellular IR substrate 2 (IRS-2) phosphorylation and PIP3.
Chow-fed Ugcgf/f-Pomc-Cre mice showed a moderate but significant increase in body weight gain and they failed to display an increase of anorexigenic neuropeptide expression during the fasting-to-re-feeding transition. IR, IRS-2, p85, and overall insulin-evoked IR and IRS-2 phosphorylation were elevated in ganglioside-depleted UgcgΔ-mHypoA-POMC neurons. A PLA demonstrated that more insulin-evoked complex formation occurred between PIP3 and SUR-1 in ganglioside-deficient POMC neurons in vitro and in vivo.
Our work suggests that GCS deletion in POMC neurons promotes body weight gain. Gangliosides are required for an appropriate adaptation of anorexigenic neuropeptide expression in the Arc during the fasting-to-re-feeding transition. Moreover, gangliosides might modulate KATP channel activity by restraining PIP3 binding to the KATP channel subunit SUR-1. Increased PIP3/SUR-1 interactions in ganglioside-deficient neurons could in turn potentially lead to electrical silencing. This work highlights that gangliosides in POMC neurons of the hypothalamic Arc are important regulators of body weight.
Elife.
2017 Jun 20
Paeger L, Karakasilioti I, Altmüller J, Frommolt P, Brüning J, Kloppenburg P.
PMID: 28632132 | DOI: 10.7554/eLife.25770
In the arcuate nucleus of the hypothalamus (ARH) satiety signaling (anorexigenic) pro-opiomelanocortin (POMC)-expressing and hunger signaling (orexigenic) agouti-related peptide (AgRP)-expressing neurons are key components of the neuronal circuits that control food intake and energy homeostasis. Here, we assessed whether the catecholamine noradrenalin directly modulates the activity of these neurons in mice. Perforated patch clamp recordings showed that noradrenalin changes the activity of these functionally antagonistic neurons in opposite ways, increasing the activity of the orexigenic NPY/AgRP neurons and decreasing the activity of the anorexigenic POMC neurons. Cell type-specific transcriptomics and pharmacological experiments revealed that the opposing effect on these neurons is mediated by the activation of excitatory α1A - and β- adrenergic receptors in NPY/AgRP neurons, while POMC neurons are inhibited via α2A - adrenergic receptors. Thus, the coordinated differential modulation of the key hypothalamic neurons in control of energy homeostasis assigns noradrenalin an important role to promote feeding.
Elife.
2015 Sep 02
Henry FE, Sugino K, Tozer A, Branco T, Sternson SM.
PMID: 26329458 | DOI: 10.7554/eLife.09800.
Molecular and cellular processes in neurons are critical for sensing and responding to energy deficit states, such as during weight-loss. AGRP neurons are a key hypothalamic population that is activated during energy deficit and increases appetite and weight-gain. Cell type-specific transcriptomics can be used to identify pathways that counteract weight-loss, and here we report high-quality gene expression profiles of AGRP neurons from well-fed and food-deprived young adult mice. For comparison, we also analyzed POMC neurons, an intermingled population that suppresses appetite and body weight. We find that AGRP neurons are considerably more sensitive to energy deficit than POMC neurons. Furthermore, we identify cell type-specific pathways involving endoplasmic reticulum-stress, circadian signaling, ion channels, neuropeptides, and receptors. Combined with methods to validate and manipulate these pathways, this resource greatly expands molecular insight into neuronal regulation of body weight, and may be useful for devising therapeutic strategies for obesity and eating disorders.
Cell.
2018 Nov 15
Brandt C, Nolte H, Henschke S, Engström Ruud L, Awazawa M, Morgan DA, Gabel P, Sprenger HG, Hess ME, Günther S, Langer T, Rahmouni K, Fenselau H, Krüger M, Brüning JC.
PMID: 30445039 | DOI: 10.1016/j.cell.2018.10.015
Adaptation of liver to the postprandial state requires coordinated regulation of protein synthesis and folding aligned with changes in lipid metabolism. Here we demonstrate that sensory food perception is sufficient to elicit early activation of hepatic mTOR signaling, Xbp1 splicing, increased expression of ER-stress genes, and phosphatidylcholine synthesis, which translate into a rapid morphological ER remodeling. These responses overlap with those activated during refeeding, where they are maintained and constantly increased upon nutrient supply. Sensory food perception activates POMC neurons in the hypothalamus, optogenetic activation of POMC neurons activates hepatic mTOR signaling and Xbp1 splicing, whereas lack of MC4R expression attenuates these responses to sensory food perception. Chemogenetic POMC-neuron activation promotes sympathetic nerve activity (SNA) subserving the liver, and norepinephrine evokes the same responses in hepatocytes in vitro and in liver in vivo as observed upon sensory food perception. Collectively, our experiments unravel that sensory food perception coordinately primes postprandial liver ER adaption through a melanocortin-SNA-mTOR-Xbp1s axis.
Psychoneuroendocrinology
2022 Jan 19
Brix, LM;Häusl, AS;Toksöz, I;Bordes, J;van Doeselaar, L;Engelhardt, C;Narayan, S;Springer, M;Sterlemann, V;Deussing, JM;Chen, A;Schmidt, MV;
PMID: 35091292 | DOI: 10.1016/j.psyneuen.2022.105670
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com