Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for NOTCH1

ACD can configure probes for the various manual and automated assays for NOTCH1 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for NOTCH1 (241)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (21)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • Notch1 (8) Apply Notch1 filter
  • JAG1 (4) Apply JAG1 filter
  • Notch2 (4) Apply Notch2 filter
  • HEY2 (2) Apply HEY2 filter
  • Lgr5 (2) Apply Lgr5 filter
  • HES1 (2) Apply HES1 filter
  • NOTCH3 (2) Apply NOTCH3 filter
  • TBD (2) Apply TBD filter
  • Bmp4 (1) Apply Bmp4 filter
  • NGFR (1) Apply NGFR filter
  • Sox7 (1) Apply Sox7 filter
  • Dll1 (1) Apply Dll1 filter
  • Nrg1 (1) Apply Nrg1 filter
  • FN1 (1) Apply FN1 filter
  • FOXC2 (1) Apply FOXC2 filter
  • GLI1 (1) Apply GLI1 filter
  • HEY1 (1) Apply HEY1 filter
  • S100B (1) Apply S100B filter
  • Wnt2b (1) Apply Wnt2b filter
  • Itgax (1) Apply Itgax filter
  • SHH (1) Apply SHH filter
  • NOTCH4 (1) Apply NOTCH4 filter
  • Adora3 (1) Apply Adora3 filter
  • Olig2 (1) Apply Olig2 filter
  • Map2 (1) Apply Map2 filter
  • Igk (1) Apply Igk filter
  • Igl (1) Apply Igl filter
  • Jag2 (1) Apply Jag2 filter
  • Cd69 (1) Apply Cd69 filter
  • TCF21 (1) Apply TCF21 filter
  • Tmem119 (1) Apply Tmem119 filter
  • Numb (1) Apply Numb filter
  • Nkx2.1 (1) Apply Nkx2.1 filter
  • BREA2  (1) Apply BREA2  filter
  • CY3-conjugated DUBR (1) Apply CY3-conjugated DUBR filter
  • Notch 1 (1) Apply Notch 1 filter

Product

  • RNAscope Multiplex Fluorescent Assay (5) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (2) Apply RNAscope filter
  • RNAscope 2.0 Assay (2) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Red assay (2) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Fluorescent Multiplex Assay (2) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 HD Duplex (1) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter
  • RNAscope Multiplex Fluorescent v2 (1) Apply RNAscope Multiplex Fluorescent v2 filter

Research area

  • Cancer (5) Apply Cancer filter
  • Other (5) Apply Other filter
  • Stem Cells (4) Apply Stem Cells filter
  • Development (2) Apply Development filter
  • Developmental (2) Apply Developmental filter
  • Neuroscience (2) Apply Neuroscience filter
  • Cancer HPV (1) Apply Cancer HPV filter
  • Inflammation (1) Apply Inflammation filter
  • lncRNA (1) Apply lncRNA filter
  • Stem cell (1) Apply Stem cell filter

Category

  • Publications (21) Apply Publications filter
The Spatiotemporal Expression of Notch1 and Numb and Their Functional Interaction during Cardiac Morphogenesis

Cells

2021 Aug 25

Miao, L;Lu, Y;Nusrat, A;Abdelnasser, HY;Datta, S;Zhou, B;Schwartz, RJ;Wu, M;
PMID: 34571841 | DOI: 10.3390/cells10092192

Numb family proteins (NFPs), including Numb and Numblike (Numbl), are commonly known for their role as cell fate determinants for multiple types of progenitor cells, mainly due to their function as Notch inhibitors. Previous studies have shown that myocardial NFP double knockout (MDKO) hearts display an up-regulated Notch activation and various defects in cardiac progenitor cell differentiation and cardiac morphogenesis. Whether enhanced Notch activation causes these defects in MDKO is not fully clear. To answer the question, we examined the spatiotemporal patterns of Notch1 expression, Notch activation, and Numb expression in the murine embryonic hearts using multiple approaches including RNAScope, and Numb and Notch reporter mouse lines. To further interrogate the interaction between NFPs and Notch signaling activation, we deleted both Notch1 or RBPJk alleles in the MDKO. We examined and compared the phenotypes of Notch1 knockout, NFPs double knockout, Notch1; Numb; Numbl and RBPJk; Numb; Numbl triple knockouts. Our study showed that Notch1 is expressed and activated in the myocardium at several stages, and Numb is enriched in the epicardium and did not show the asymmetric distribution in the myocardium. Cardiac-specific Notch1 deletion causes multiple structural defects and embryonic lethality. Notch1 or RBPJk deletion in MDKO did not rescue the structural defects in the MDKO but partially rescued the defects of cardiac progenitor cell differentiation, cardiomyocyte proliferation, and trabecular morphogenesis. Our study concludes that NFPs regulate progenitor cell differentiation, cardiomyocyte proliferation, and trabecular morphogenesis partially through Notch1 and play more roles than inhibiting Notch1 signaling during cardiac morphogenesis.
Metastatic HPV-Mediated Adenocarcinoma Arising from a Base of Tongue Primary: A Case Report with Cytomorphology and Molecular Findings with Review of the Literature

Head and neck pathology

2022 Jan 11

Zheng, S;Magliocca, KR;Reid, MD;Kaka, AS;Lubin, D;
PMID: 35015191 | DOI: 10.1007/s12105-021-01407-4

Human papillomavirus (HPV)-mediated squamous cell carcinomas of the oropharynx are common, however only rare cases of HPV-mediated oropharyngeal adenocarcinoma have been reported to date. In this report, we describe a 50 year old nonsmoking male who originally presented with an enlarging neck mass. Fine needle aspiration cytology confirmed an HPV-mediated adenocarcinoma. Subsequent surgery identified a 0.7 cm base of tongue primary HPV-mediated carcinoma with focal glandular differentiation and a 4.0 cm cystic lymph node metastasis demonstrating entirely glandular differentiation. Next generation sequencing of the metastasis detected a pathogenic NOTCH1 mutation.
Clonal analysis of Notch1-expressing cells reveals the existence of unipotent stem cells that retain long-term plasticity in the embryonic mammary gland

Nat Cell Biol.

2018 May 21

Lilja AM, Rodilla V, Huyghe M, Hannezo E, Landragin C, Renaud O, Leroy O, Rulands S, Simons BD, Fre S.
PMID: 29784917 | DOI: 10.1038/s41556-018-0108-1

Recent lineage tracing studies have revealed that mammary gland homeostasis relies on unipotent stem cells. However, whether and when lineage restriction occurs during embryonic mammary development, and which signals orchestrate cell fate specification, remain unknown. Using a combination of in vivo clonal analysis with whole mount immunofluorescence and mathematical modelling of clonal dynamics, we found that embryonic multipotent mammary cells become lineage-restricted surprisingly early in development, with evidence for unipotency as early as E12.5 and no statistically discernable bipotency after E15.5. To gain insights into the mechanisms governing the switch from multipotency to unipotency, we used gain-of-function Notch1 mice and demonstrated that Notch activation cell autonomously dictates luminal cell fate specification to both embryonic and basally committed mammary cells. These functional studies have important implications for understanding the signals underlying cell plasticity and serve to clarify how reactivation of embryonic programs in adult cells can lead to cancer.

Lineage tracing of Notch1-expressing cells in intestinal tumours reveals a distinct population of cancer stem cells.

Sci Rep.

2019 Jan 29

Mourao L, Jacquemin G, Huyghe M, Nawrocki WJ, Menssouri N, Servant N, Fre S.
PMID: 30696875 | DOI: 10.1038/s41598-018-37301-3

Colon tumours are hierarchically organized and contain multipotent self-renewing cells, called Cancer Stem Cells (CSCs). We have previously shown that the Notch1 receptor is expressed in Intestinal Stem Cells (ISCs); given the critical role played by Notch signalling in promoting intestinal tumourigenesis, we explored Notch1 expression in tumours. Combining lineage tracing in two tumour models with transcriptomic analyses, we found that Notch1+ tumour cells are undifferentiated, proliferative and capable of indefinite self-renewal and of generating a heterogeneous clonal progeny. Molecularly, the transcriptional signature of Notch1+ tumour cells highly correlates with ISCs, suggestive of their origin from normal crypt cells. Surprisingly, Notch1+ expression labels a subset of CSCs that shows reduced levels of Lgr5, a reported CSCs marker. The existence of distinct stem cell populations within intestinal tumours highlights the necessity of better understanding their hierarchy and behaviour, to identify the correct cellular targets for therapy.

Chronic Lymphocytic Leukemia With Two B-Cell Populations of Discordant Light Chain Restrictions in Individual Patients

American journal of clinical pathology

2023 Feb 07

Zhao, Y;Siddiqi, I;Wildes, TJ;McCracken, J;Deak, K;Rehder, C;Wang, E;
PMID: 36749322 | DOI: 10.1093/ajcp/aqac165

To evaluate clinicopathologic characteristics of biclonal chronic lymphocytic leukemia (CLL).Retrospectively analyze clinical data and pathologic features.Ten cases were identified in which flow cytometry demonstrated an abnormal B-cell population with a CLL-like immunophenotype but showed no definitive light chain restriction. All had cytogenetic abnormalities detected, including seven with two CLL-related abnormalities. Four of these showed features suggestive of clonal evolution, all having del(13q) as a "stem-line" abnormality and three showing del(11q) as a "side-line" abnormality. Five (50%) cases demonstrated deleterious NOTCH1 mutations, in contrast to 11.8% in a control group of monoclonal CLL (P < .05). Of the 10 patients, 5 received treatment, with good/partial response in three cases and therapeutic resistance in one case. The median treatment-free survival was estimated at 68 months.Despite a polytypic pattern of light chain expression, the neoplastic nature of biclonal CLL is suggested by a characteristic CLL phenotype and can be confirmed by cytogenetic and genomic analyses. The two clones with discordant light chain isotypes may share a "stem-line" cytogenetic abnormality, suggesting possible clonal evolution. Biclonal CLL is associated with NOTCH1 mutations, which may occur in a small subclone and gradually evolve in clonal size. Genomic analysis on light chain-sorted and/or chronologically collected samples may provide insight into clonal evolution in CLL.
SP1-induced lncRNA DUBR promotes stemness and oxaliplatin resistance of hepatocellular carcinoma via E2F1-CIP2A feedback

Cancer letters

2021 Dec 25

Liu, S;Bu, X;Kan, A;Luo, L;Xu, Y;Chen, H;Lin, X;Lai, Z;Wen, D;Huang, L;Shi, M;
PMID: 34958891 | DOI: 10.1016/j.canlet.2021.12.026

Oxaliplatin-based chemotherapy is widely used to treat advanced hepatocellular carcinoma (HCC), but many patients develop drug resistance that leads to tumor recurrence. Cancer stem cells (CSCs) are known to contribute to chemoresistance, the underlying mechanism, however, remains largely unknown. In this study, we discovered a specificity protein 1 (SP1)-induced long noncoding RNA--DPPA2 upstream binding RNA (DUBR) and its high expression in HCC tissues and liver CSCs. DUBR was associated with HCC progression and poor chemotherapy response. Moreover, DUBR facilitated the stemness and oxaliplatin resistance of HCC in vitro and in vivo. Mechanistically, DUBR upregulated cancerous inhibitor of protein phosphatase 2A (CIP2A) expression through E2F1-mediated transcription regulation. DUBR also exerted function by binding microRNA (miR)-520d-5p as a competing endogenous RNA to upregulate CIP2A at mRNA level. CIP2A, in turn, stabilized E2F1 protein and activated the Notch1 signaling pathway, thereby increasing the stemness feature of HCC and leading to chemoresistance. In conclusion, we identified SP1/DUBR/E2F1-CIP2A as a critical axis to activate the Notch1 signaling pathway and promote stemness and chemoresistance of HCC. Therefore, DUBR could be a potential target in HCC treatment.
GAS1 is required for Notch-dependent facilitation of SHH signaling in the ventral forebrain neuroepithelium

Development (Cambridge, England)

2021 Oct 26

Marczenke, M;Sunaga-Franze, DY;Popp, O;Althaus, IW;Sauer, S;Mertins, P;Christ, A;Allen, BL;Willnow, TE;
PMID: 34698766 | DOI: 10.1242/dev.200080

Growth arrest-specific 1 (GAS1) acts as a co-receptor to Patched 1 promoting sonic hedgehog (SHH) signaling in the developing nervous system. GAS1 mutations in humans and animal models result in forebrain and craniofacial malformations, defects ascribed to a function for GAS1 in SHH signaling during early neurulation. Here, we confirm loss of SHH activity in the forebrain neuroepithelium in GAS1-deficient mice and in iPSC-derived cell models of human neuroepithelial differentiation. However, our studies document that this defect can be attributed, at least in part, to a novel role for GAS1 in facilitating Notch signaling, essential to sustain a persistent SHH activity domain in the forebrain neuroepithelium. GAS1 directly binds NOTCH1, enhancing ligand-induced processing of the NOTCH1 intracellular domain, which drives Notch pathway activity in the developing forebrain. Our findings identify a unique role for GAS1 in integrating Notch and SHH signal reception in neuroepithelial cells, and they suggest that loss of GAS1-dependent NOTCH1 activation contributes to forebrain malformations in individuals carrying GAS1 mutations.
Delta-like1-expressing cells at the gland base promote proliferation of gastric antral stem cells in mouse

Cellular and molecular gastroenterology and hepatology

2021 Aug 23

Horita, N;Keeley, TM;Hibdon, ES;Delgado, E;Lafkas, D;Siebel, CW;Samuelson, LC;
PMID: 34438113 | DOI: 10.1016/j.jcmgh.2021.08.012

Notch pathway signaling maintains gastric epithelial cell homeostasis by regulating stem cell proliferation and differentiation. We previously identified NOTCH1 and NOTCH2 as the key Notch receptors controlling gastric stem cell function. Here, we identify the niche cells and critical Notch ligand responsible for regulating stem cell proliferation in the distal mouse stomach.Expression of Notch ligands in the gastric antrum was determined by qRT-PCR and cellular localization was determined by in situ hybridization and immunostaining. The contribution of specific Notch ligands to regulate epithelial cell proliferation in adult mice was determined by inducible gene deletion, or by pharmacologic inhibition using antibodies directed against specific Notch ligands. Mouse gastric organoid cultures were used to confirm that Notch ligand signaling was epithelial specific.DLL1 and JAG1 were the most abundantly expressed Notch ligands in the adult mouse stomach, with DLL1 restricted to the antral gland base, and JAG1 localized to the upper gland region. Inhibition of DLL1 alone or in combination with other Notch ligands significantly reduced epithelial cell proliferation and the growth of gastric antral organoids, while inhibition of the other Notch ligands, DLL4, JAG1 and JAG2, did not affect proliferation or organoid growth. Similarly, DLL1, and not DLL4, regulated proliferation of LGR5+ antral stem cells, which express the NOTCH1 receptor.DLL1 is the key Notch ligand regulating epithelial cell proliferation in the gastric antrum. We propose that DLL1-expressing cells at the gland base are Notch niche cells which signal to adjacent LGR5+ antral stem cells to regulate stem cell proliferation and epithelial homeostasis.
lncRNA BREA2 promotes metastasis by disrupting the WWP2-mediated ubiquitination of Notch1

Proceedings of the National Academy of Sciences of the United States of America

2023 Feb 21

Zhang, Z;Lu, YX;Liu, F;Sang, L;Shi, C;Xie, S;Bian, W;Yang, JC;Yang, Z;Qu, L;Chen, SY;Li, J;Yang, L;Yan, Q;Wang, W;Fu, P;Shao, J;Li, X;Lin, A;
PMID: 36795754 | DOI: 10.1073/pnas.2206694120

Notch has been implicated in human cancers and is a putative therapeutic target. However, the regulation of Notch activation in the nucleus remains largely uncharacterized. Therefore, characterizing the detailed mechanisms governing Notch degradation will identify attractive strategies for treating Notch-activated cancers. Here, we report that the long noncoding RNA (lncRNA) BREA2 drives breast cancer metastasis by stabilizing the Notch1 intracellular domain (NICD1). Moreover, we reveal WW domain containing E3 ubiquitin protein ligase 2 (WWP2) as an E3 ligase for NICD1 at K1821 and a suppressor of breast cancer metastasis. Mechanistically, BREA2 impairs WWP2-NICD1 complex formation and in turn stabilizes NICD1, leading to Notch signaling activation and lung metastasis. BREA2 loss sensitizes breast cancer cells to inhibition of Notch signaling and suppresses the growth of breast cancer patient-derived xenograft tumors, highlighting its therapeutic potential in breast cancer. Taken together, these results reveal the lncRNA BREA2 as a putative regulator of Notch signaling and an oncogenic player driving breast cancer metastasis.
Neural crest cell-autonomous roles of fibronectin in cardiovascular development.

Development

2016 Jan 01

Wang X, Astrof S.
PMID: 26552887 | DOI: 10.1242/dev.125286

The chemical and mechanical properties of extracellular matrices (ECMs) modulate diverse aspects of cellular fates; however, how regional heterogeneity in ECM composition regulates developmental programs is not well understood. We discovered that fibronectin 1 (Fn1) is expressed in strikingly non-uniform patterns during mouse development, suggesting that regionalized synthesis of the ECM plays cell-specific regulatory roles during embryogenesis. To test this hypothesis, we ablated Fn1 in the neural crest (NC), a population of multi-potent progenitors expressing high levels of Fn1. We found that Fn1 synthesized by the NC mediated morphogenesis of the aortic arch artery and differentiation of NC cells into vascular smooth muscle cells (VSMCs) by regulating Notch signaling. We show that NC Fn1 signals in an NC cell-autonomous manner through integrin α5β1 expressed by the NC, leading to activation of Notch and differentiation of VSMCs. Our data demonstrate an essential role of the localized synthesis of Fn1 in cardiovascular development and spatial regulation of Notch signaling.

Defining the earliest step of cardiovascular lineage segregation by single-cell RNA-seq

Science.

2018 Jan 25

Lescroart F, Wang X, Lin X, Swedlund B, Gargouri S, Sànchez-Dànes A, Moignard V, Dubois C, Paulissen C, Kinston S, Göttgens B, Blanpain C.
PMID: 29371425 | DOI: 10.1126/science.aao4174

Mouse heart development arises from Mesp1 expressing cardiovascular progenitors (CPs) that are specified during gastrulation. The molecular processes that control early regional and lineage segregation of CPs have been unclear. Here, we performed single cell RNA-sequencing of WT and Mesp1 null CPs in mice. We showed that populations of Mesp1 CPs are molecularly distinct and span the continuum between epiblast and later mesodermal cells including hematopoietic progenitors. Single cell transcriptome analysis of Mesp1-deficient CPs showed that Mesp1 is required for the exit from the pluripotent state and the induction of the cardiovascular gene expression program. We identified distinct populations of Mesp1 CPs that correspond to progenitors committed to different cell lineages and regions of the heart, identifying the molecular features associated with early lineage restriction and regional segregation of the heart at the early stage of mouse gastrulation.

A method for manual and automated multiplex RNAscope in situ hybridization and immunocytochemistry on cytospin samples.

PLoS One.

2018 Nov 20

Chan S, Filézac de L'Etang A, Rangell L, Caplazi P, Lowe JB, Romeo V.
PMID: 30458053 | DOI: 10.1371/journal.pone.0207619

In situ analysis of biomarkers is essential for clinical diagnosis and research purposes. The increasing need to understand the molecular signature of pathologies has led to the blooming of ultrasensitive and multiplexable techniques that combine in situ hybridization (ISH) and immunohistochemistry or immunocytochemistry (IHC or ICC). Most protocols are tailored to formalin-fixed paraffin embedded (FFPE) tissue sections. However, methods to perform such assays on non-adherent cell samples, such as patient blood-derived PBMCs, rare tumor samples, effusions or other body fluids, dissociated or sorted cells, are limited. Typically, a laboratory would need to invest a significant amount of time and resources to establish one such assay. Here, we describe a method that combines ultrasensitive RNAscope-ISH with ICC on cytospin cell preparations. This method allows automated, sensitive, multiplex ISH-ICC on small numbers of non-adherent cells. We provide guidelines for both chromogenic and fluorescent ISH/ICC combinations that can be performed either in fully automated or in manual settings. By using a CD8+ T cells in vitro stimulation paradigm, we demonstrate that this protocol is sensitive enough to detect subtle differences in gene expression and compares well to commonly used methods such as RT-qPCR and flow cytometry with the added benefit of visualization at the cellular level.

Pages

  • 1
  • 2
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?