Fluorescent nanoparticle-mediated semiquantitative MYC protein expression analysis in morphologically diffuse large B-cell lymphoma
Takayanagi, N;Momose, S;Kikuchi, J;Tanaka, Y;Anan, T;Yamashita, T;Higashi, M;Tokuhira, M;Kizaki, M;Tamaru, JI;
PMID: 34171161 | DOI: 10.1111/pin.13131
The current World Health Organization (WHO) classification defines a new disease entity of high-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements, making fluorescence in situ hybridization (FISH) screening for these genes mandatory. In addition, the prognostic significance of MYC expression was reported, with a cut-off value of 40%. However, interobserver discrepancies arise due to the heterogeneous intensity of MYC expression by immunohistochemistry. Moreover, a cut-off value of positivity for MYC protein in diffuse large B-cell lymphoma (DLBCL) varies among studies at present. Here, we applied a high-sensitivity semiquantitative immunohistochemical technique using fluorescent nanoparticles called phosphor-integrated dots (PID) to evaluate the MYC expression in 50 de novo DLBCL cases, and compared it with the conventional diaminobenzidine (DAB)-developing system. The high MYC expression detected by the PID-mediated system predicted poor overall survival in DLBCL patients. However, we found no prognostic value of MYC protein expression for any cut-off value by the DAB-developing system, even if the intensity was considered. These results indicate that the precise evaluation of MYC protein expression can clarify the prognostic values in DLBCL, irrespective of MYC rearrangement.
Intestinal MYC modulates obesity-related metabolic dysfunction
Luo, Y;Yang, S;Wu, X;Takahashi, S;Sun, L;Cai, J;Krausz, KW;Guo, X;Dias, HB;Gavrilova, O;Xie, C;Jiang, C;Liu, W;Gonzalez, FJ;
PMID: 34211180 | DOI: 10.1038/s42255-021-00421-8
MYC is a transcription factor with broad biological functions, notably in the control of cell proliferation. Here, we show that intestinal MYC regulates systemic metabolism. We find that MYC expression is increased in ileum biopsies from individuals with obesity and positively correlates with body mass index. Intestine-specific reduction of MYC in mice improves high-fat-diet-induced obesity, insulin resistance, hepatic steatosis and steatohepatitis. Mechanistically, reduced expression of MYC in the intestine promotes glucagon-like peptide-1 (GLP-1) production and secretion. Moreover, we identify Cers4, encoding ceramide synthase 4, catalysing de novo ceramide synthesis, as a MYC target gene. Finally, we show that administration of the MYC inhibitor 10058-F4 has beneficial effects on high-fat-diet-induced metabolic disorders, and is accompanied by increased GLP-1 and reduced ceramide levels in serum. This study positions intestinal MYC as a putative drug target against metabolic diseases, including non-alcoholic fatty liver disease and non-alcoholic steatohepatitis.
Cellular and molecular life sciences : CMLS
Nie, W;Li, M;Liu, B;Zhang, Y;Wang, Y;Wang, J;Jin, L;Ni, A;Xiao, L;Shen, XZ;Chen, J;Lin, W;Han, F;
PMID: 36394649 | DOI: 10.1007/s00018-022-04603-9
Fibrosis is a relentlessly progressive and irreversible cause of organ damage, as in chronic kidney disease (CKD), but its underlying mechanisms remain elusive. We found that a circular RNA, circPTPN14, is highly expressed in human kidneys with biopsy-proved chronic interstitial fibrosis, mouse kidneys subjected to ischemia/reperfusion (IR) or unilateral ureteral obstruction (UUO), and TGFβ1-stimulated renal tubule epithelial cells (TECs). The intrarenal injection of circPTPN14 shRNA alleviated the progression of fibrosis in kidneys subjected to IR or UUO. Knockdown of circPTPN14 in TECs inhibited TGFβ1-induced expression of profibrotic genes, whereas overexpressing circPTPN14 increased the profibrotic effect of TGFβ1. The profibrotic action of circPTPN14 was ascribed to an increase in MYC transcription. The binding of circPTPN14 to the KH3 and KH4 domains of far upstream element (FUSE) binding protein 1 (FUBP1) enhanced the interaction between FUBP1 and FUSE domain, which was required for the initiation of MYC transcription. In human kidneys (n = 30) with biopsy-proved chronic interstitial fibrosis, the expression of circPTPN14 positively correlated with MYC expression. Taken together these studies show a novel mechanism in the pathogenesis of renal fibrosis, mediated by circPTPN14, which can be a target in the diagnosis and treatment of CKD.
International journal of molecular sciences
Helweg, LP;Windmöller, BA;Burghardt, L;Storm, J;Förster, C;Wethkamp, N;Wilkens, L;Kaltschmidt, B;Banz-Jansen, C;Kaltschmidt, C;
PMID: 35269569 | DOI: 10.3390/ijms23052426
Cancer stem cells (CSCs) are a small subpopulation of tumor cells harboring properties that include self-renewal, multi-lineage differentiation, tumor reconstitution, drug resistance and invasiveness, making them key players in tumor relapse. In the present paper, we develop new CSC models and analyze the molecular pathways involved in survival to identify targets for the establishment of novel therapies. Endometrial carcinoma-derived stem-like cells (ECSCs) were isolated from carcinogenic gynecological tissue and analyzed regarding their expression of prominent CSC markers. Further, they were treated with the MYC-signaling inhibitor KJ-Pyr-9, chemotherapeutic agent carboplatin and type II diabetes medication metformin. ECSC populations express common CSC markers, such as Prominin-1 and CD44 antigen as well as epithelial-to-mesenchymal transition markers, Twist, Snail and Slug, and exhibit the ability to form free-floating spheres. The inhibition of MYC signaling and treatment with carboplatin as well as metformin significantly reduced the cell survival of ECSC-like cells. Further, treatment with metformin significantly decreased the mitochondrial membrane potential of ECSC-like cells, while the extracellular lactate concentration was increased. The established ECSC-like populations represent promising in vitro models to further study the contribution of ECSCs to endometrial carcinogenesis. Targeting MYC signaling as well as mitochondrial bioenergetics has shown promising results in the diminishment of ECSCs, although molecular signaling pathways need further investigations.
Palani, NP;Horvath, C;Timshel, PN;Folkertsma, P;Grønning, AGB;Henriksen, TI;Peijs, L;Jensen, VH;Sun, W;Jespersen, NZ;Wolfrum, C;Pers, TH;Nielsen, S;Scheele, C;
PMID: 37337126 | DOI: 10.1038/s42255-023-00820-z
Adipocyte function is a major determinant of metabolic disease, warranting investigations of regulating mechanisms. We show at single-cell resolution that progenitor cells from four human brown and white adipose depots separate into two main cell fates, an adipogenic and a structural branch, developing from a common progenitor. The adipogenic gene signature contains mitochondrial activity genes, and associates with genome-wide association study traits for fat distribution. Based on an extracellular matrix and developmental gene signature, we name the structural branch of cells structural Wnt-regulated adipose tissue-resident (SWAT) cells. When stripped from adipogenic cells, SWAT cells display a multipotent phenotype by reverting towards progenitor state or differentiating into new adipogenic cells, dependent on media. Label transfer algorithms recapitulate the cell types in human adipose tissue datasets. In conclusion, we provide a differentiation map of human adipocytes and define the multipotent SWAT cell, providing a new perspective on adipose tissue regulation.
Mashinchian, O;Hong, X;Michaud, J;Migliavacca, E;Lefebvre, G;Boss, C;De Franceschi, F;Le Moal, E;Collerette-Tremblay, J;Isern, J;Metairon, S;Raymond, F;Descombes, P;Bouche, N;Muñoz-Cánoves, P;Feige, JN;Bentzinger, CF;
PMID: 35245177 | DOI: 10.7554/eLife.57393
Sustained exposure to a young systemic environment rejuvenates aged organisms and promotes cellular function. However, due to the intrinsic complexity of tissues it remains challenging to pinpoint niche-independent effects of circulating factors on specific cell populations. Here, we describe a method for the encapsulation of human and mouse skeletal muscle progenitors in diffusible polyethersulfone hollow fiber capsules that can be used to profile systemic aging in vivo independent of heterogeneous short-range tissue interactions. We observed that circulating long-range signaling factors in the old systemic environment lead to an activation of Myc and E2F transcription factors, induce senescence, and suppress myogenic differentiation. Importantly, in vitro profiling using young and old serum in 2D culture does not capture all pathways deregulated in encapsulated cells in aged mice. Thus, in vivo transcriptomic profiling using cell encapsulation allows for the characterization of effector pathways of systemic aging with unparalleled accuracy.
Hirano, M;So, Y;Tsunekawa, S;Kabata, M;Ohta, S;Sagara, H;Sankoda, N;Taguchi, J;Yamada, Y;Ukai, T;Kato, M;Nakamura, J;Ozawa, M;Yamamoto, T;Yamada, Y;
PMID: 35145326 | DOI: 10.1038/s42255-022-00530-y
β cells have a limited capacity for regeneration, which predisposes towards diabetes. Here, we show that, of the MYC family members, Mycl plays a key role in proliferation of pancreatic endocrine cells. Genetic ablation of Mycl causes a reduction in the proliferation of pancreatic endocrine cells in neonatal mice. By contrast, the expression of Mycl in adult mice stimulates the proliferation of β and α cells, and the cells persist after withdrawal of Mycl expression. A subset of the expanded α cells give rise to insulin-producing cells after this withdrawal. Transient Mycl expression in vivo is sufficient to normalize the hyperglycaemia of diabetic mice. In vitro expression of Mycl similarly provokes active replication in islet cells, even in those from aged mice. Finally, we show that MYCL stimulates the division of human adult cadaveric islet cells. Our results demonstrate that the induction of Mycl alone expands the functional β-cell population, which may provide a regenerative strategy for β cells.