ACD can configure probes for the various manual and automated assays for MYC for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
J Cell Biol.
2017 Sep 06
Kourtidis A, Necela B, Lin WH, Lu R, Feathers RW, Asmann YW, Thompson EA, Anastasiadis PZ.
PMID: 28877994 | DOI: 10.1083/jcb.201612125
Cumulative evidence demonstrates that most RNAs exhibit specific subcellular distribution. However, the mechanisms regulating this phenomenon and its functional consequences are still under investigation. Here, we reveal that cadherin complexes at the apical zonula adherens (ZA) of epithelial adherens junctions recruit the core components of the RNA-induced silencing complex (RISC) Ago2, GW182, and PABPC1, as well as a set of 522 messenger RNAs (mRNAs) and 28 mature microRNAs (miRNAs or miRs), via PLEKHA7. Top canonical pathways represented by these mRNAs include Wnt/β-catenin, TGF-β, and stem cell signaling. We specifically demonstrate the presence and silencing of MYC, JUN, and SOX2 mRNAs by miR-24 and miR-200c at the ZA. PLEKHA7 knockdown dissociates RISC from the ZA, decreases loading of the ZA-associated mRNAs and miRNAs to Ago2, and results in a corresponding increase of MYC, JUN, and SOX2 protein expression. The present work reveals a mechanism that directly links junction integrity to the silencing of a set of mRNAs that critically affect epithelial homeostasis.
American Journal of Clinical Pathology
2017 Oct 09
Baena-Del Valle JA, Zheng Q, Hicks JL, Trock HFBJ, Morrissey C, Corey E, Cornish TC, Sfanos KS, De Marzo AM.
PMID: - | DOI: 10.1093/ajcp/aqx094
Abstract
Objectives
Recent commercialization of methods for in situ hybridization using Z-pair probe/branched DNA amplification has led to increasing adoption of this technology for interrogating RNA expression in formalin-fixed, paraffin-embedded (FFPE) tissues. Current practice for FFPE block storage is to maintain them at room temperature, often for many years.
Methods
To examine the effects of block storage time on FFPE tissues using a number of RNA in situ probes with the Advanced Cellular Diagnostic’s RNAscope assay.
Results
We report marked reductions in signals after 5 years and significant reductions often after 1 year. Furthermore, storing unstained slides cut from recent cases (<1 year old) at –20°C can preserve hybridization signals significantly better than storing the blocks at room temperature and cutting the slides fresh when needed.
Conclusions
We submit that the standard practice of storing FFPE tissue blocks at room temperature should be reevaluated to better preserve RNA for in situ hybridization.
Nat Cell Biol. 2015 Sep;17(9):1145-57.
Kourtidis A, Ngok SP, Pulimeno P, Feathers RW, Carpio LR, Baker TR, Carr JM, Yan IK, Borges S, Perez EA, Storz P, Copland JA, Patel T, Thompson EA, Citi S, Anastasiadis PZ.
PMID: 26302406 | DOI: 10.1038/ncb3227
Am J Surg Pathol.
2018 Aug 31
Hashimoto T, Ogawa R, Yoshida H, Taniguchi H, Kojima M, Saito Y, Sekine S.
PMID: 30179900 | DOI: 10.1097/PAS.0000000000001149
Colorectal traditional serrated adenomas (TSAs) are often associated with precursor polyps, including hyperplastic polyps and sessile serrated adenoma/polyps. To elucidate the molecular mechanisms involved in the progression from precursor polyps to TSAs, the present study analyzed 15 precursor polyp-associated TSAs harboring WNT pathway gene mutations. Laser microdissection-based sequencing analysis showed that BRAF or KRAS mutations were shared between TSA and precursor polyps in all lesions. In contrast, the statuses of WNT pathway gene mutations were different between the 2 components. In 8 lesions, RNF43, APC, or CTNNB1 mutations, were exclusively present in TSA. RNF43 mutations were shared between the TSA and precursor components in 3 lesions; however, they were heterozygous in the precursor polyps whereas homozygous in the TSA. In 4 lesions with PTPRK-RSPO3 fusions, RNA in situ hybridization demonstrated that overexpression of RSPO3, reflecting PTPRK-RSPO3 fusion transcripts, was restricted to TSA components. Consistent with the results of the genetic and in situ hybridization analyses, nuclear β-catenin accumulation and MYC overexpression were restricted to the TSA component in 13 and 12 lesions, respectively. These findings indicate that the WNT pathway gene alterations are acquired during the progression from the precursor polyps to TSAs and that the activation of the WNT pathway plays a critical role in the development of TSA rather than their progression to high-grade lesions.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com