ACD can configure probes for the various manual and automated assays for MTOR for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Pathology - Research and Practice
2018 Nov 24
Wang X, Jia Y, Deng H, Liu Y, Liu Y.
PMID: - | DOI: 10.1016/j.prp.2018.11.019
Recent studies have shown that intratumoral heterogenity is prevalent in esophageal squamous cell cancer (ESCC) based on DNA sequencing and chromosome analysis in multiple regions from the same tumor. This study aimed to investigate the expression of ZNF750, EP300, MTOR and KMT2D and their intratumoral heterogeneity(ITH) in patients with ESCC. A total of 106 cases, who underwent esophagectomy from 2008 to 2010, with two foci from each case, were tested by immunohistochemistry(IHC) as well as 12 cases were tested by RNAscope in this study.We found that 58/106 (54.72%), 66/106 (62.26%), 75/106 (70.75%%) of ESCC showed high expression of ZNF750, EP300, MTOR, respectively by IHC, and 8/12 (66.67%), 10/12 (83.33%), 4/12 (33.33%) and 6/12 (50%) showed high expression of ZNF750, EP300, MTOR and KMT2D, respectively by RNAscope. Multivariate analysis showed that MTOR expression was an independent infavorable prognostic factor of overall survival(OS) (HR = 1.921; P = 0.000). This study also found that 44/106(41,51%), 37/106 (34.91%), 39/106(36.79%) of ESCC showed heterogeneous expression of ZNF750, EP300 and MTOR respectively by IHC, 8/12(66.67%), 8/12(66.67%), 4/12(33.33%), 4/12(33.33%) of ZNF750, EP300, MTOR and KMT2D respectively by RNAscope, IHC and RNAscope could successfully detect a high prevalence of ITH. In conclusion, findings of this study showed that ZNF750, EP300, MTOR and KMT2D heterogeneously expressed in ESCC. High expression of ZNF750 related to a better outcome,while EP300 and MTOR related to a poor prognosis.
Cell Communication and Signaling
2017 Sep 18
Mei Y, Du Z, Hu C, Greenwald NF, Abedalthagafi M, Agar NYR, Dunn GP, Bi WL, Santagata S, Dunn IF.
PMID: 28923059 | DOI: 10.1186/s12964-017-0189-7
Abstract
BACKGROUND:
Meningiomas are the most common primary intracranial tumors in adults. While a majority of meningiomas are slow growing neoplasms that may cured by surgical resection, a subset demonstrates more aggressive behavior and insidiously recurs despite surgery and radiation, without effective alternative treatment options. Elucidation of critical mitogenic pathways in meningioma oncogenesis may offer new therapeutic strategies. We performed an integrated genomic and molecular analysis to characterize the expression and function of osteoglycin (OGN) in meningiomas and explored possible therapeutic approaches for OGN-expressing meningiomas.
METHODS:
OGN mRNA expression in human meningiomas was assessed by RNA microarray and RNAscope. The impact of OGN on cell proliferation, colony formation, and mitogenic signaling cascades was assessed in a human meningioma cell line (IOMM-Lee) with stable overexpression of OGN. Furthermore, the functional consequences of introducing an AKT inhibitor in OGN-overexpressing meningioma cells were assessed.
RESULTS:
OGN mRNA expression was dramatically increased in meningiomas compared to a spectrum of other brain tumors and normal brain. OGN-overexpressing meningioma cells demonstrated an elevated rate of cell proliferation, cell cycle activation, and colony formation as compared with cells transfected with control vector. In addition, NF2 mRNA and protein expression were both attenuated in OGN-overexpressing cells. Conversely, mTOR pathway and AKT activation increased in OGN-overexpressing cells compared to control cells. Lastly, introduction of an AKT inhibitor reduced OGN expression in meningioma cells and resulted in increased cell death and autophagy, suggestive of a reciprocal relationship between OGN and AKT.
CONCLUSION:
We identify OGN as a novel oncogene in meningioma proliferation. AKT inhibition reduces OGN protein levels in meningioma cells, with a concomitant increase in cell death, which provides a promising treatment option for meningiomas with OGN overexpression.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com