Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for LGR5

ACD can configure probes for the various manual and automated assays for LGR5 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for LGR5 (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (9)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • Lgr5 (152) Apply Lgr5 filter
  • Axin2 (18) Apply Axin2 filter
  • OLFM4 (16) Apply OLFM4 filter
  • OLFM4 (11) Apply OLFM4 filter
  • Lgr4 (9) Apply Lgr4 filter
  • Sox9 (7) Apply Sox9 filter
  • Lgr6 (7) Apply Lgr6 filter
  • GLI1 (6) Apply GLI1 filter
  • (-) Remove TBD filter TBD (6)
  • ASCL2 (5) Apply ASCL2 filter
  • Rspo3 (5) Apply Rspo3 filter
  • Wnt2b (5) Apply Wnt2b filter
  • Rspo1 (4) Apply Rspo1 filter
  • Rspo2 (4) Apply Rspo2 filter
  • Wnt5a (4) Apply Wnt5a filter
  • PDGFRA (4) Apply PDGFRA filter
  • RNF43 (4) Apply RNF43 filter
  • WNT2 (4) Apply WNT2 filter
  • Alpi (4) Apply Alpi filter
  • ASCL2 (4) Apply ASCL2 filter
  • (-) Remove Wnt4 filter Wnt4 (3)
  • Wnt7b (3) Apply Wnt7b filter
  • CD34 (3) Apply CD34 filter
  • Rspo4 (3) Apply Rspo4 filter
  • Ptch1 (3) Apply Ptch1 filter
  • Hopx (3) Apply Hopx filter
  • NOTUM (3) Apply NOTUM filter
  • LRIG1 (3) Apply LRIG1 filter
  • EPHB2 (3) Apply EPHB2 filter
  • Olfml3 (3) Apply Olfml3 filter
  • Nedd4 (3) Apply Nedd4 filter
  • Nedd4l (3) Apply Nedd4l filter
  • Dkk3 (2) Apply Dkk3 filter
  • Wnt10a (2) Apply Wnt10a filter
  • Wnt10b (2) Apply Wnt10b filter
  • Wnt7a (2) Apply Wnt7a filter
  • BMI1 (2) Apply BMI1 filter
  • CCND1 (2) Apply CCND1 filter
  • Atoh1 (2) Apply Atoh1 filter
  • Gif (2) Apply Gif filter
  • CD44 (2) Apply CD44 filter
  • CLU (2) Apply CLU filter
  • Dll1 (2) Apply Dll1 filter
  • KRT79 (2) Apply KRT79 filter
  • FGFR2 (2) Apply FGFR2 filter
  • GREM1 (2) Apply GREM1 filter
  • Fzd5 (2) Apply Fzd5 filter
  • Wnt3a (2) Apply Wnt3a filter
  • MUC6 (2) Apply MUC6 filter
  • EPHB2 (2) Apply EPHB2 filter

Product

  • RNAscope 2.0 Assay (1) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Red assay (1) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Fluorescent Multiplex Assay (1) Apply RNAscope Fluorescent Multiplex Assay filter

Research area

  • Stem Cells (2) Apply Stem Cells filter
  • Cancer (1) Apply Cancer filter
  • Development (1) Apply Development filter
  • Signalling (1) Apply Signalling filter
  • Stem cell (1) Apply Stem cell filter

Category

  • (-) Remove Publications filter Publications (9)
Stromal R-spondin orchestrates gastric epithelial stem cells and gland homeostasis.

Nature

2017 Aug 16

Sigal M, Logan CY, Kapalczynska M, Mollenkopf HJ, Berger H, Wiedenmann B, Nusse R, Amieva MR, Meyer TF.
PMID: 28813421 | DOI: 10.1038/nature23642

The constant regeneration of stomach epithelium is driven by long-lived stem cells, but the mechanism that regulates their turnover is not well understood. We have recently found that the gastric pathogen Helicobacter pylori can activate gastric stem cells and increase epithelial turnover, while Wnt signalling is known to be important for stem cell identity and epithelial regeneration in several tissues. Here we find that antral Wnt signalling, marked by the classic Wnt target gene Axin2, is limited to the base and lower isthmus of gastric glands, where the stem cells reside. Axin2 is expressed by Lgr5+ cells, as well as adjacent, highly proliferative Lgr5- cells that are able to repopulate entire glands, including the base, upon depletion of the Lgr5+ population. Expression of both Axin2 and Lgr5 requires stroma-derived R-spondin 3 produced by gastric myofibroblasts proximal to the stem cell compartment. Exogenous R-spondin administration expands and accelerates proliferation of Axin2+/Lgr5- but not Lgr5+ cells. Consistent with these observations, H. pylori infection increases stromal R-spondin 3 expression and expands the Axin2+ cell pool to cause hyperproliferation and gland hyperplasia. The ability of stromal niche cells to control and adapt epithelial stem cell dynamics constitutes a sophisticated mechanism that orchestrates epithelial regeneration and maintenance of tissue integrity.

Inverse correlation between PD-L1 expression and LGR5 expression in tumor budding of stage II/III colorectal cancer

Annals of Diagnostic Pathology

2021 Mar 01

Sato, K;Uehara, T;Nakajima, T;Iwaya, M;Miyagawa, Y;Watanabe, T;Ota, H;
| DOI: 10.1016/j.anndiagpath.2021.151739

We investigated the expression of LGR5, the most robust and reliable known cancer stem cell (CSC) marker of colorectal cancer, and PD-L1 in tumor budding (TB), as well as clinicopathological features. Tissue microarrays (TMAs) were generated from TB samples from 32 stage II/III colorectal adenocarcinoma patients, and LGR5 expression in TMAs was evaluated by RNAscope, an extremely sensitive RNA in situ hybridization technique. LGR5 expression was significantly lower in the PD-L1-positive group than in the PD-L1-negative group (P = 0.0256). In the PD-L1-positive group, the tumor-infiltrating lymphocytes (TILs) score tended to be higher while the TNM stage was lower compared with the PD-L1 negative group (P = 0.0822 and P = 0.0765, respectively). There was no significant difference in Overall Survival between the PD-L1-positive and PD-L1-negative groups (log-rank test, P = 0.8218). This study showed that PD-L1-positive patients are a unique population with low LGR5 expression, and that LGR5-positive cells may be a promising therapeutic target in PD-L1-negative patients.
Expression profile of intestinal stem cell and cancer stem cell markers in gastric cancers with submucosal invasion

Pathology, research and practice

2021 Jan 02

Kim, HS;Song, HJ;Kim, HU;Jeong, IH;Koh, HM;Shin, JH;Jang, BG;
PMID: 33450435 | DOI: 10.1016/j.prp.2020.153336

Cancer stem cells (CSCs) are believed to be responsible for tumor growth, invasion, and metastasis. Submucosal invasion, which greatly enhances metastasis risk, is a critical step in gastric cancer (GC) progression. To identify stem cell-related markers associated with submucosal invasion and lymph node (LN) metastasis in GCs, we investigated the expression of candidate CSC markers (CD133, CD44, and ALDH1A) and intestinal stem cell (ISC) markers (EPHB2, OLFM4, and LGR5) in early GCs that manifested submucosal invasion. We discovered that EPHB2 and LGR5 expression was frequently confined to the basal area of the lamina propria (basal pattern) in mucosal cancer, and the proportion of stem cell marker-positive cells substantially increased during submucosal invasion. CD44 expression showed a focal pattern, ALDH1A was predominantly expressed diffusely, and there was no expansion of CD44 or ALDH1A expression in the submucosal cancer cells. Unexpectedly, no CSC markers showed any associations with LN metastasis, and only loss of EPHB2 expression was associated with increased LN metastasis. Treatment of RSPO2, a niche factor, along with Wnt 3a, to GC cells led to increased EPHB2 and LGR5 mRNA levels. RNA in situ hybridization confirmed specific RSPO2 expression in the smooth muscle cells of the muscularis mucosa, suggesting that RSPO2 is responsible for the increased expression of ISC markers in GC cells at the basal areas. In summary, no stem cell markers were associated with increased LN metastasis in early GCs. Conversely, isolated EPHB2 expression was associated with lower LN metastasis. EPHB2 and LGR5 showed a basal distribution pattern along with enhanced expression in submucosal invading cells in early GCs, which was induced by a niche factor, RSPO2, from the muscularis mucosa.
Overexpression of Cancer-Associated Stem Cell Gene OLFM4 in the Colonic Epithelium of Patients With Primary Sclerosing Cholangitis

Inflammatory bowel diseases

2021 Feb 11

Neyazi, M;Bharadwaj, SS;Bullers, S;Varenyiova, Z;Oxford IBD Cohort Study Investigators, ;Travis, S;Arancibia-Cárcamo, CV;Powrie, F;Geremia, A;
PMID: 33570127 | DOI: 10.1093/ibd/izab025

To examine immune-epithelial interactions and their impact on epithelial transformation in primary sclerosing cholangitis-associated ulcerative colitis (PSC-UC) using patient-derived colonic epithelial organoid cultures (EpOCs). The EpOCs were originated from colonic biopsies from patients with PSC-UC (n = 12), patients with UC (n = 14), and control patients (n = 10) and stimulated with cytokines previously associated with intestinal inflammation (interferon (IFN) γ and interleukin (IL)-22). Markers of cytokine downstream pathways, stemness, and pluripotency were analyzed by real-time quantitative polymerase chain reaction and immunofluorescence. The OLFM4 expression in situ was assessed by RNAscope and immunohistochemistry. A distinct expression of stem cell-associated genes was observed in EpOCs derived from patients with PSC-UC, with lower expression of the classical stem-cell marker LGR5 and overexpression of OLFM4, previously associated with pluripotency and early stages of neoplastic transformation in the gastrointestinal and biliary tracts. High levels of OLFM4 were also found ex vivo in colonic biopsies from patients with PSC-UC. In addition, IFNγ stimulation resulted in the downregulation of LGR5 in EpOCs, whereas higher expression of OLFM4 was observed after IL-22 stimulation. Interestingly, expression of the IL-22 receptor, IL22RA1, was induced by IFNγ, suggesting that a complex interplay between these cytokines may contribute to carcinogenesis in PSC-UC. Higher expression of OLFM4, a cancer stemness gene induced by IL-22, is present in PSC-UC, suggesting that IL-22 responses may result in alterations of the intestinal stem-cell niche in these patients.
A constant pool of Lgr5+ intestinal stem cells is required for intestinal homeostasis

Cell reports

2021 Jan 26

Tan, SH;Phuah, P;Tan, LT;Yada, S;Goh, J;Tomaz, LB;Chua, M;Wong, E;Lee, B;Barker, N;
PMID: 33503423 | DOI: 10.1016/j.celrep.2020.108633

Lgr5+ crypt base columnar cells, the operational intestinal stem cells (ISCs), are thought to be dispensable for small intestinal (SI) homeostasis. Using a Lgr5-2A-DTR (diphtheria toxin receptor) model, which ablates Lgr5+ cells with near-complete efficiency and retains endogenous levels of Lgr5 expression, we show that persistent depletion of Lgr5+ ISCs in fact compromises SI epithelial integrity and reduces epithelial turnover in vivo. In vitro, Lgr5-2A-DTR SI organoids are unable to establish or survive when Lgr5+ ISCs are continuously eliminated by adding DT to the media. However, transient exposure to DT at the start of culture allows organoids to form, and the rate of outgrowth reduces with the increasing length of DT presence. Our results indicate that intestinal homeostasis requires a constant pool of Lgr5+ ISCs, which is supplied by rapidly reprogrammed non-Lgr5+ crypt populations when preexisting Lgr5+ ISCs are ablated.
Single cell and genetic analyses reveal conserved populations and signaling mechanisms of gastrointestinal stromal niches

Nat Commun

2020 Jan 17

Kim JE Fei L, Yin WC, Coquenlorge S, Rao-Bhatia A, Zhang X, Shi SSW, Lee JH, Hahn NA, Rizvi W, Kim KH, Sung HK, Hui CC, Guo G, Kim TH
PMID: 31953387 | DOI: 10.1038/s41467-019-14058-5

Stomach and intestinal stem cells are located in discrete niches called the isthmus and crypt, respectively. Recent studies have demonstrated a surprisingly conserved role for Wnt signaling in gastrointestinal development. Although intestinal stromal cells secrete Wnt ligands to promote stem cell renewal, the source of stomach Wnt ligands is still unclear. Here, by performing single cell analysis, we identify gastrointestinal stromal cell populations with transcriptome signatures that are conserved between the stomach and intestine. In close proximity to epithelial cells, these perictye-like cells highly express telocyte and pericyte markers as well as Wnt ligands, and they are enriched for Hh signaling. By analyzing mice activated for Hh signaling, we show a conserved mechanism of GLI2 activation of Wnt ligands. Moreover, genetic inhibition of Wnt secretion in perictye-like stromal cells or stromal cells more broadly demonstrates their essential roles in gastrointestinal regeneration and development, respectively, highlighting a redundancy in gastrointestinal stem cell niches.
ZNRF3 and RNF43 cooperate to safeguard metabolic liver zonation and hepatocyte proliferation

Cell stem cell

2021 Jun 11

Sun, T;Annunziato, S;Bergling, S;Sheng, C;Orsini, V;Forcella, P;Pikiolek, M;Kancherla, V;Holwerda, S;Imanci, D;Wu, F;Meylan, LC;Puehringer, LF;Waldt, A;Oertli, M;Schuierer, S;Terracciano, LM;Reinker, S;Ruffner, H;Bouwmeester, T;Sailer, AW;George, E;Roma, G;de Weck, A;Piscuoglio, S;Lohmann, F;Naumann, U;Liberali, P;Cong, F;Tchorz, JS;
PMID: 34129813 | DOI: 10.1016/j.stem.2021.05.013

AXIN2 and LGR5 mark intestinal stem cells (ISCs) that require WNT/β-Catenin signaling for constant homeostatic proliferation. In contrast, AXIN2/LGR5+ pericentral hepatocytes show low proliferation rates despite a WNT/β-Catenin activity gradient required for metabolic liver zonation. The mechanisms restricting proliferation in AXIN2+ hepatocytes and metabolic gene expression in AXIN2+ ISCs remained elusive. We now show that restricted chromatin accessibility in ISCs prevents the expression of β-Catenin-regulated metabolic enzymes, whereas fine-tuning of WNT/β-Catenin activity by ZNRF3 and RNF43 restricts proliferation in chromatin-permissive AXIN2+ hepatocytes, while preserving metabolic function. ZNRF3 deletion promotes hepatocyte proliferation, which in turn becomes limited by RNF43 upregulation. Concomitant deletion of RNF43 in ZNRF3 mutant mice results in metabolic reprogramming of periportal hepatocytes and induces clonal expansion in a subset of hepatocytes, ultimately promoting liver tumors. Together, ZNRF3 and RNF43 cooperate to safeguard liver homeostasis by spatially and temporally restricting WNT/β-Catenin activity, balancing metabolic function and hepatocyte proliferation.
Epithelium-derived Indian Hedgehog restricts stromal expression of ErbB family members that drive colonic tumor cell proliferation

Oncogene

2021 Jan 21

Westendorp, F;Karpus, ON;Koelink, PJ;Vermeulen, JLM;Meisner, S;Koster, J;Büller, NVJA;Wildenberg, ME;Muncan, V;van den Brink, GR;
PMID: 33479497 | DOI: 10.1038/s41388-020-01633-0

Indian Hedgehog (Ihh) is a morphogen expressed by epithelial cells in the small intestine and colon that signals in a paracrine manner to gp38+ stromal cells. The loss of Ihh signaling results in increased epithelial proliferation, lengthening and multiplication of intestinal crypts and the activation of a stromal cell immune response. How Ihh controls epithelial proliferation through the stroma and how it affects colorectal cancer development remains poorly defined. To study the influence of Ihh signaling on the earliest stage of colorectal carcinogenesis, we used a well characterized mouse model in which both alleles of the Adenoma Polyposis Coli (Apc) gene could be inducibly deleted, leading to instant transformation of the colonic epithelium to an adenomatous phenotype. Concurrent deletion of Ihh from the adenomatous colonic epithelium of Apc inducible double mutant mice resulted in a remarkable increase in the hyperproliferative epithelial phenotype and increased accumulation of Lgr5+ stem cells. Transcriptional profiling of sorted colonic gp38+ fibroblasts showed upregulation of three ErbB pathway ligands (EREG, BTC, and NRG1) in Apc-/-Ihh-/- double mutant mice. We found that recombinant EREG, BTC, and NRG1 but not Lgr5 ligand R-Spondin promoted growth and proliferation of Apc double mutant colonic organoids. Thus, the loss of Ihh enhances Apc-driven colonic adenomagenesis via upregulation of ErbB pathway family members in colonic stromal cells. Our findings highlight the critical role of epithelium-derived Indian Hedgehog as a stromal tumor suppressor in the intestine.
R-spondin2 signaling is required for oocyte-driven intercellular communication and follicular growth

Cell Death Differ

2020 Apr 27

De Cian MC, Gregoire EP, Le Rolle M, Lachambre S, Mondin M, Bell S, Guigon CJ, Chassot AA, Chaboissier MC
PMID: 32341451 | DOI: 10.1038/s41418-020-0547-7

R-spondin2 (RSPO2) is a member of the R-spondin family, which are secreted activators of the WNT/?-catenin (CTNNB1) signaling pathway. In the mouse postnatal ovary, WNT/CTNNB1 signaling is active in the oocyte and in the neighboring supporting cells, the granulosa cells. Although the role of Rspo2 has been previously studied using in vitro experiments, the results are conflicting and the in vivo ovarian function of Rspo2 remains unclear. In the present study, we found that RSPO2/Rspo2 expression is restricted to the oocyte of developing follicles in both human and mouse ovaries from the beginning of the follicular growth. In mice, genetic deletion of Rspo2 does not impair oocyte growth, but instead prevents cell cycle progression of neighboring granulosa cells, thus resulting in an arrest of follicular growth. We further show this cell cycle arrest to be independent of growth promoting GDF9 signaling, but rather associated with a downregulation of WNT/CTNNB1 signaling in granulosa cells. To confirm the contribution of WNT/CTNNB1 signaling in granulosa cell proliferation, we induced cell type specific deletion of Ctnnb1 postnatally. Strikingly, follicles lacking Ctnnb1 failed to develop beyond the primary stage. These results show that RSPO2 acts in a paracrine manner to sustain granulosa cell proliferation in early developing follicles. Taken together, our data demonstrate that the activation of WNT/CTNNB1 signaling by RSPO2 is essential for oocyte-granulosa cell interactions that drive maturation of the ovarian follicles and eventually female fertility
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?