ACD can configure probes for the various manual and automated assays for LGR5 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Nat Cell Biol.
2017 Jun 05
Leushacke M, Tan SH, Wong A, Swathi Y, Hajamohideen A, Tan LT, Goh J, Wong E, Denil SLIJ, Murakami K, Barker N.
PMID: 28581476 | DOI: 10.1038/ncb3541
The daily renewal of the corpus epithelium is fuelled by adult stem cells residing within tubular glands, but the identity of these stem cells remains controversial. Lgr5 marks homeostatic stem cells and 'reserve' stem cells in multiple tissues. Here, we report Lgr5 expression in a subpopulation of chief cells in mouse and human corpus glands. Using a non-variegated Lgr5-2A-CreERT2 mouse model, we show by lineage tracing that Lgr5-expressing chief cells do not behave as corpus stem cells during homeostasis, but are recruited to function as stem cells to effect epithelial renewal following injury by activating Wnt signalling. Ablation of Lgr5+ cells severely impairs epithelial homeostasis in the corpus, indicating an essential role for these Lgr5+ cells in maintaining the homeostatic stem cell pool. We additionally define Lgr5+ chief cells as a major cell-of-origin of gastric cancer. These findings reveal clinically relevant insights into homeostasis, repair and cancer in the corpus.
The Egyptian Journal of Hospital Medicine
2021 Apr 01
Bazid, H;Seleit, I;Abo Hegazy, S;Samaka, R;
| DOI: 10.21608/ejhm.2021.165168
Hum Reprod.
2018 Apr 10
Tempest N, Baker AM, Wright NA, Hapangama DK.
PMID: 29648645 | DOI: 10.1093/humrep/dey083
Abstract
STUDY QUESTION:
Is human endometrial leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) gene expression limited to the postulated epithelial stem cell niche, stratum basalis glands, and is it hormonally regulated?
SUMMARY ANSWER:
LGR5 expressing cells are not limited to the postulated stem cell niche but LGR5 expression is hormonally regulated.
WHAT IS KNOWN ALREADY:
The human endometrium is a highly regenerative tissue; however, endometrial epithelial stem cell markers are yet to be confirmed. LGR5 is a marker of stem cells in various epithelia.
STUDY DESIGN, SIZE, DURATION:
The study was conducted at a University Research Institute. Endometrial samples from 50 healthy women undergoing benign gynaecological surgery with no endometrial pathology at the Liverpool Women's hospital were included and analysed in the following six sub-categories; proliferative, secretory phases of menstrual cycle, postmenopausal, those using oral and local progestagens and samples for in vitro explant culture.
PARTICIPANTS/MATERIALS, SETTING, METHODS:
In this study, we used the gold standard method, in situ hybridisation (ISH) along with qPCR and a systems biology approach to study the location of LGR5 gene expression in full thickness human endometrium and Fallopian tubes. The progesterone regulation of endometrial LGR5 was examined in vivo and in short-term cultured endometrial tissue explants in vitro. LGR5 expression was correlated with epithelial proliferation (Ki67), and expression of previously reported epithelia progenitor markers (SOX9 and SSEA-1) immunohistochemistry (IHC).
MAIN RESULTS AND THE ROLE OF CHANCE:
LGR5 gene expression was significantly higher in the endometrial luminal epithelium than in all other epithelial compartments in the healthy human endometrium, including the endometrial stratum basalis (P < 0.05). The strongest SSEA-1 and SOX9 staining was observed in the stratum basalis glands, but the general trend of SOX9 and SSEA-1 expression followed the same cyclical pattern of expression as LGR5. Stratum functionalis epithelial Ki67-LI and LGR5 expression levels correlated significantly (r = 0.74, P = 0.01), however, they did not correlate in luminal and stratum basalis epithelium (r = 0.5 and 0.13, respectively). Endometrial LGR5 demonstrates a dynamic spatiotemporal expression pattern, suggesting hormonal regulation. Oral and local progestogens significantly reduced endometrial LGR5 mRNA levels compared with women not on hormonal treatment (P < 0.01). Our data were in agreement with in silico analysis of published endometrial microarrays.
LARGE SCALE DATA:
We did not generate our own large scale data but interrogated publically available large scale data sets.
LIMITATIONS, REASONS FOR CAUTION:
In the absence of reliable antibodies for human LGR5 protein and validated lineage markers for the various epithelial populations that potentially exist within the endometrium, our study does not formally characterise or examine the functional ability of the resident LGR5+ cells as multipotent.
WIDER IMPLICATIONS OF THE FINDINGS:
These data will facilitate future lineage tracing studies in the human endometrial epithelium; to identify the location of stem cells and further complement the in vitro functional studies, to confirm if the LGR5 expressing epithelial cells indeed represent the epithelial stem cell population.
bioRxiv
2017 Mar 18
Dame MK, Attili D, McClintock SD, Dedhia PH, Ouilette P, Hardt O, Chin AM, Xue X, Laliberte J, Katz EL, Newsome GM, Hill D, Miller A, Agorku D, Altheim CH, Bosio A, Simon B, Samuelson LC, Stoerker JA, Appelman HD, Varani J, Wicha MS, Brenner DE, Shah YM,
PMID: - | DOI: 10.1101/118034
The intestine is maintained by stem cells, marked by LGR5 expression, located at the base of crypts. Genetically engineered mouse models have provided information about marker genes and stem cell pathways. Less is known about human intestinal stem cells due to difficulty detecting and isolating these cells. We established an organoid repository from patient-derived adenomas, adenocarcinomas, and normal colon, which we analyzed for variants in 71 colorectal cancer (CRC) associated genes. Normal and neoplastic colon tissue organoids were analyzed for LGR5 expression by immunohistochemistry. LGR5-positive cells were isolated from 4 adenoma organoid lines and analyzed by RNA-sequencing. LGR5 expression in epithelium and stroma was associated with tumor stage. Integrating functional experiments with RNA-seq data from LGR5-positive adenoma organoid cells and normal colon, we associated expression of CRC-specific genes, including DKK4, with LGR5 expression. This system can be used to study LGR5-expressing cells in human tissue homeostasis and carcinogenesis.
Cell Stem Cell.
2017 Dec 21
Sugimoto S, Ohta Y, Fujii M, Matano M, Shimokawa M, Nanki K, Date S, Nishikori S, Nakazato Y, Nakamura T, Kanai T, Sato T.
PMID: 29290616 | DOI: 10.1016/j.stem.2017.11.012
Genetic lineage tracing has revealed that Lgr5+ murine colon stem cells (CoSCs) rapidly proliferate at the crypt bottom. However, the spatiotemporal dynamics of human CoSCs in vivo have remained experimentally intractable. Here we established an orthotopic xenograft system for normal human colon organoids, enabling stable reconstruction of the human colon epithelium in vivo. Xenografted organoids were prone to displacement by the remaining murine crypts, and this could be overcome by complete removal of the mouse epithelium. Xenografted organoids formed crypt structures distinctively different from surrounding mouse crypts, reflecting their human origin. Lineage tracing using CRISPR-Cas9 to engineer an LGR5-CreER knockin allele demonstrated self-renewal and multipotency of LGR5+ CoSCs. In contrast to the rapidly cycling properties of mouse Lgr5+ CoSCs, human LGR5+ CoSCs were slow-cycling in vivo. This organoid-based orthotopic xenograft model enables investigation of the functional behaviors of human CoSCs in vivo, with potential therapeutic applications in regenerative medicine.
EMBO J. 2019 Jan 11.
2019 Jan 11
Castillo-Azofeifa D, Fazio EN, Nattiv R, Good HJ, Wald T, Pest MA, de Sauvage FJ, Klein OD, Asfaha S.
PMID: 30635334 | DOI: 10.15252/embj.201899984
Cellular and Molecular Gastroenterology and Hepatology
2016 Jun 22
Tsai YH, Hill DR, Kumar N, Huang S, Chin AM, Dye BR, Nagy MS, Verzi MP, Spence JR.
PMID: - | DOI: 10.1016/j.jcmgh.2016.06.002
The Lgr family of transmembrane proteins (Lgr4, 5, 6) act as functional receptors for R-spondin proteins (Rspo 1, 2, 3, 4), and potentiate Wnt signaling in different contexts. Lgr5 is arguably the best characterized of the Lgr family members in a number of adult and embryonic of contexts in mice. However, the function ofLGR family members in early embryonic development is unclear, and has not been explored during human development or tissue differentiation in detail.
We interrogated the function and expression of LGR family members using human pluripotent stem cell–derived tissues including definitive endoderm, mid/hindgut, and intestinal organoids. We performed embryonic lineage tracing in Lgr5–creER–eGFP mice.
We show that LGR5 is part of the human definitive endoderm (DE) gene signature, and LGR5 transcripts are induced robustly when human pluripotent stem cells are differentiated into DE. Our results show that LGR4and 5 are functionally required for efficient human endoderm induction. Consistent with data in human DE, we observe Lgr5 reporter (eGFP) activity in the embryonic day 8.5 mouse endoderm, and show the ability to lineage trace these cells into the adult intestine. However, gene expression data also suggest that there are human–mouse species-specific differences at later time points of embryonic development.
Our results show that LGR5 is induced during DE differentiation, LGR receptors are functionally required for DE induction, and that they function to potentiate WNT signaling during this process.
Cellular and Molecular Gastroenterology and Hepatology
2018 Aug 24
Xu H, Li J, Chen H, Ghishan FK.
PMID: - | DOI: 10.1016/j.jcmgh.2018.08.005
Abstract
Background and Aims
Lgr5 overexpression has been detected in colorectal cancers (CRCs), including some cases of colitis-associated CRCs. In colitis-associated CRCs, chronic inflammation is a contributing factor in carcinogenesis. We recently reported that intestinal sodium/hydrogen exchanger isoform 8 (NHE8) plays an important role in intestinal mucosal protection and that loss of NHE8 expression results in ulcerative colitis (UC)-like condition. Therefore, we hypothesized that NHE8 may be involved in the development of intestinal tumors.
Methods
We assessed NHE8 expression in human CRCs by IHC and studied tumor burden in NHE8KO mice using an AOM/DSS colon cancer model. We also evaluated cell proliferation in HT29NHE8KO cells and assessed tumor growth in NSG mice xenografted with HT29NHE8KO cells. To verify if a relationship exists between Lgr5 and NHE8 expression, we analyzed Lgr5 expression in NHE8KO mice by PCR and in situ hybridization. Lgr5 expression and cell proliferation in the absence of NHE8 were confirmed in colonic organoid cultures. The expression of β-catenin and c-Myc were also analyzed to evaluate Wnt/β-catenin activation.
Results
NHE8 was undetectable in human CRC tissues. Whereas only 9% of NHE8WT mice exhibited tumorigenesis in the AOM/DSS colon cancer model, almost ten times more NHE8KO mice (89%) developed tumors. In the absence of NHE8, a higher colony formation unit was discovered in HT29NHE8KO cells. In NSG mice, larger tumors developed at the site where HT29NHE8KO cells were injected compared to HT29NHE8WT cells. Furthermore, NHE8 deficiency resulted in elevated Lgr5 expression in the colon, in HT29 derived tumors, and in colonoids. The absence of NHE8 also increased Wnt/β-catenin activation.
Conclusions
NHE8 might be an intrinsic factor that regulates Wnt/β-catenin in the intestine.
Gut, 62(7), 1012–1023.
Ziskin JL, Dunlap D, Yaylaoglu M, Fodor IK, Forrest WF, Patel R, Ge N, Hutchins GG, Pine JK, Quirke P, Koeppen H, Jubb AM (2013).
PMID: 22637696 | DOI: 10.1136/gutjnl-2011-301195.
STAR protocols
2022 Jun 17
Lim, HYG;Yada, S;Barker, N;
PMID: 35620071 | DOI: 10.1016/j.xpro.2022.101411
EMBO j
2019 Dec 23
Novellasdemunt L, Kucharska A, Jamieson C, Prange-Barczynska M, Baulies A, Antas P, van der Vaart J, Gehart H, Maurice MM, Li VS
PMID: 31867777 | DOI: 10.15252/embj.2019102771
Pathol Int.
2016 Sep 01
Nakajima T, Uehara T, Maruyama Y, Iwaya M, Kobayashi Y, Ota H.
PMID: 27593551 | DOI: 10.1111/pin.12451
Leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) is a putative intestinal stem cell marker that is also expressed in various tumors. To analyze its pathological characteristics in mucosal gastric signet-ring cell carcinoma (SRCC), we investigated Lgr5 expression in 35 intramucosal gastric SRCC patients using RNAscope, a newly developed RNA in situ hybridization technique. Lgr5 expression in individual tumor cells was scored semi-quantitatively from 0 to 400. Ki67 was also examined by immunohistochemistry, with a linear arrangement of Ki67-expressing cells present in 20 of 35 cases. This area of Ki67-expressing cells was topographically divided into upper, middle, and lower regions. All cases with linear Ki67 expression patterns also had Lgr5-positive cells arranged in a linear fashion in the lower area-which was distinct from the area of high Ki67 expression. The rate of Ki67 positivity in Lgr5-positive cells was significantly lower than that of Lgr5-negative cells in areas of high Ki67 expression. In intramucosal SRCC, the low mitotic activity of Lgr5-positive cells suggests that they may represent cancer stem cells as seen in other types of stomach carcinomas. Intramucosal SRCC may therefore contain stem cells expressing Lgr5 in the lower area of the lamina propria, akin to normal gastric pyloric mucosa.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com