ACD can configure probes for the various manual and automated assays for KRT19 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Hepatology
2023 Jan 01
Short, C;Zhong, A;Xu, J;Mahdi, E;Glazier, A;Malkoff, N;
| DOI: 10.1097/HEP.0000000000000026
J Cell Biochem.
2016 May 18
Anderson CM, Zhang B, Miller M, Butko E, Wu X, Laver T, Kernag C, Kim J, Luo Y, Lamparski H, Park E, Su N, Ma XJ.
PMID: 27191821 | DOI: 10.1002/jcb.25606.
Biomarkers such as DNA, RNA, and protein are powerful tools in clinical diagnostics and therapeutic development for many diseases. Identifying RNA expression at the single cell level within the morphological context by RNA in situ hybridization provides a great deal of information on gene expression changes over conventional techniques that analyze bulk tissue, yet widespread use of this technique in the clinical setting has been hampered by the dearth of automated RNA ISH assays. Here we present an automated version of the RNA ISH technology RNAscope that is adaptable to multiple automation platforms. The automated RNAscope assay yields a high signal-to-noise ratio with little to no background staining and results comparable to the manual assay. In addition, the automated duplex RNAscope assay was able to detect two biomarkers simultaneously. Lastly, assay consistency and reproducibility were confirmed by quantification of TATA-box binding protein (TBP) mRNA signals across multiple lots and multiple experiments. Taken together, the data presented in this study demonstrate that the automated RNAscope technology is a high performance RNA ISH assay with broad applicability in biomarker research and diagnostic assay development.
Oncotarget.
2016 Sep 13
Valkenburg KC, Amend SR, Verdone JE, van der Toom EE, Hernandez JR, Gorin MA, Pienta KJ.
PMID: 27634877 | DOI: 10.18632/oncotarget.12000
Bone metastasis is a lethal and incurable disease. It is the result of the dissemination of cancer cells to the bone marrow. Due to the difficulty in sampling and detection, few techniques exist to efficiently and consistently detect and quantify disseminated tumor cells (DTCs) in the bone marrow of cancer patients. Because mouse models represent a crucial tool with which to study cancer metastasis, we developed a novel method for the simple selection-free detection and quantification of bone marrow DTCs in mice. We have used this protocol to detect human and murine DTCs in xenograft, syngeneic, and genetically engineered mouse models. We are able to detect and quantify bone marrow DTCs in mice that do not have overt bone metastasis. This protocol is amenable not only for detection and quantification purposes but also to study the expression of markers of numerous biological processes or tissue-specificity.
Nature communications
2023 Feb 15
Li, Q;Zhang, XX;Hu, LP;Ni, B;Li, DX;Wang, X;Jiang, SH;Li, H;Yang, MW;Jiang, YS;Xu, CJ;Zhang, XL;Zhang, YL;Huang, PQ;Yang, Q;Zhou, Y;Gu, JR;Xiao, GG;Sun, YW;Li, J;Zhang, ZG;
PMID: 36792623 | DOI: 10.1038/s41467-023-36521-0
Hepatology communications
2023 Jan 20
Zhong, A;Short, C;Xu, J;Fernandez, GE;Malkoff, N;Noriega, N;Yeo, T;Wang, L;Mavila, N;Asahina, K;Wang, KS;
PMID: 36662671 | DOI: 10.1097/HC9.0000000000000018
Cell discovery
2022 Nov 01
Peng, J;Li, F;Wang, J;Wang, C;Jiang, Y;Liu, B;He, J;Yuan, K;Pan, C;Lin, M;Zhou, B;Chen, L;Gao, D;Zhao, Y;
PMID: 36316325 | DOI: 10.1038/s41421-022-00474-3
Nat Commun.
2018 Mar 09
Ferreira-Gonzalez S, Lu WY, Raven A, Dwyer B, Man TY, O'Duibhir E, Lewis PJS, Campana L, Kendall TJ, Bird TG, Tarrats N, Acosta JC, Boulter L, Forbes SJ.
PMID: 29523787 | DOI: 10.1038/s41467-018-03299-5
Cellular senescence is a mechanism that provides an irreversible barrier to cell cycle progression to prevent undesired proliferation. However, under pathological circumstances, senescence can adversely affect organ function, viability and regeneration. We have developed a mouse model of biliary senescence, based on the conditional deletion of Mdm2 in bile ducts under the control of the Krt19 promoter, that exhibits features of biliary disease. Here we report that senescent cholangiocytes induce profound alterations in the cellular and signalling microenvironment, with recruitment of myofibroblasts and macrophages causing collagen deposition, TGFβ production and induction of senescence in surrounding cholangiocytes and hepatocytes. Finally, we study how inhibition of TGFβ-signalling disrupts the transmission of senescence and restores liver function. We identify cellular senescence as a detrimental mechanism in the development of biliary injury. Our results identify TGFβ as a potential therapeutic target to limit senescence-dependent aggravation in human cholangiopathies.
Pancreatology
2021 Jul 01
Martens, S;Coolens, K;Van Bulck, M;Madhloum, H;Esni, F;Leuckx, G;Heimberg, H;Bouwens, L;Jacquemin, P;De Paep, D;Veld, P;Lefesvre, P;Real, F;Rovira, M;Rooman, I;
| DOI: 10.1016/j.pan.2021.05.016
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com