ACD can configure probes for the various manual and automated assays for KRAS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Am J Pathol.
2018 Jul 20
Jang BG, Kim HS, Chang WY, Bae JM, Kim WH, Kang GH.
PMID: 30036518 | DOI: 10.1016/j.ajpath.2018.06.012
We investigated the expression profile of leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) during colorectal cancer (CRC) progression and determined the prognostic impact of LGR5 in a large cohort of CRC samples. LGR5 expression was higher in CRCs than in normal mucosa, and was not associated with other cancer stem cell markers. LGR5 positivity was observed in 68% of 788 CRCs and was positively correlated with old age, well-to-moderate differentiation, and nuclear β-catenin expression. Enhanced LGR5 expression remained persistent during the adenoma-carcinoma transition, but markedly declined in the budding cancer cells at the invasive fronts, which was not due to altered Wnt or epithelial to mesenchymal transition signaling. LGR5 showed negative correlations with microsatellite instability and CpG island methylator phenotype, and was not associated with KRAS and BRAF mutations. Notably, LGR5 positivity was an independent prognostic marker for better clinical outcomes in CRC patients. LGR5 overexpression attenuated tumor growth by decreasing ERK phosphorylation along with decreased colony formation and migration abilities in DLD1 cells. Likewise, knockdown of LGR5 expression resulted in a decline in the colony- forming and migration capacities in LoVo cells. Taken together, our data suggest the suppressive role of LGR5 in CRC progression.
J Vis Exp.
2018 Aug 14
Anderson CM, Laeremans A, Wang Xm, Wu X, Zhang B, Doolittle E, Kim J, Li N, Pimentel HXY, Park P, Ma XJ.
PMID: 30176002 | DOI: 10.3791/58097
Because precision medicine is highly dependent on the accurate detection of biomarkers, there is an increasing need for standardized and robust technologies that measure RNA biomarkers in situ in clinical specimens. While grind-and-bind assays like RNAseq and quantitative RT-PCR enable highly sensitive gene expression measurements, they also require RNA extraction and thus prevent valuable expression analysis within the morphological tissue context. The in situ hybridization (ISH) assay described here can detect RNA target sequences as short as 50 nucleotides at single-nucleotide resolution and at the single-cell level. This assay is complementary to the previously developed commercial assay and enables sensitive and specific in situ detection of splice variants, short targets, and point mutations within the tissue. In this protocol, probes were designed to target unique exon junctions for two clinically important splice variants, EGFRvIII and METΔ14. The detection of short target sequences was demonstrated by the specific detection of CDR3 sequences of T-cell receptors α and β in the Jurkat T-cell line. Also shown is the utility of this ISH assay for the distinction of RNA target sequences at single-nucleotide resolution (point mutations) through the visualization of EGFR L858R and KRAS G12A single-nucleotide variations in cell lines using automated staining platforms. In summary, the protocol shows a specialized RNA ISH assay that enables the detection of splice variants, short sequences, and mutations in situ for manual performance and on automated stainers.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com